Term 1 Welcome & Anaconda

· Convolutional Neural Network【neutral:中立的副硅、非顏色的; convolution: 回旋靠欢、盤旋 】 卷積神經(jīng)網(wǎng)絡(CNN || ConvNet) a type of feedforward artificial neural network(前饋人工神經(jīng)網(wǎng)絡)

·Recurrent Neural Network: 【recurrent: 經(jīng)常發(fā)生的,周期性的】循環(huán)神經(jīng)網(wǎng)絡

·Generative Adversarial Network: 【generative: 能生產(chǎn)的荆烈,有生產(chǎn)力的先煎;adversarial:敵手的践叠,對手的】生成對抗網(wǎng)絡

全部課程包含了 五個項目,分別:

Project 1: Your First Neural Network: Build a simple network to make predictions of bike sharing usage.

Project 2: Object Recognition: Build a neural network that detects objects from images.

Project 3: Generate TV Scripts: Use deep learning to generate new scripts for your favorite TV show.

Project 4: Make a Translation Chatbot: Build a chatbot that translates text in real time.

Project 5: Generate Faces: Use a generative adversarial network(GAN) to generate novel faces【novel: 新奇的膊存、異常的导而;小說】

Prerequisites

數(shù)學:You can brush up on most of the math prerequisites ?at Khan Academy.

Intermediate Python experience:?這里有udacity的python課程

最好有:?Multivariable Calculs?(多元微積分)和?Linear Algebra?(線性代數(shù))

==> 數(shù)學不會阻止你做項目忱叭,但是 It is encouraged for a theoretical understanding.

**這個課程是有Deadline的!**

The First week

? ? ? ? ? 1今艺、REGRESSION MODELS: Scikit-Learn

? ? ? ? ? 2韵丑、INTRO TO NEURAL NETWORKS: Perceptrons(感知單元) ?&& ?Train Networks

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?Perceptrons: The simplest form of a neural network?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?Train Networks: two ways, 1. gradient descent: 梯度下降, improve themselves based on the accuracy of their prediction; 2. back propagation: 反向傳播, improve individual parameters.

? ? ? ? ? 3、YOUR FIRST NEURAL NETWORK: Numpy (擴充庫虚缎,緯度數(shù)組&矩陣運算&數(shù)學函數(shù)函式庫)

Terminology:

Scikit-learn: An extremely popular Machine Learning library for python.

Perceptrons: The simplest form of a neural network.

Gradient descent: A process by which Machine Learning algorithms learn to improve themselves based on the accuracy of their predictions. You`ll learn more about this in upcoming lessons.

Backpropagation(How the backpropagation algorithm works): The process by which neural networks learn how to improve individual parameters. You`ll learn all about this in the upcoming lessons.(反向傳播撵彻,propagation:繁殖、增殖遥巴;宣傳千康、波及)

Numpy: An extremely popular library for scientific computing in python.

Tensorflow: One of the most popular python libraries for creating neural networks. It is maintained by Google.

Introduction To Anaconda And Jupyter

If you haven`t used Numpy, Pandas, or Matplotlib before, please take our?Intro to Data Analysis(數(shù)據(jù)分析入門: 使用NumPy和Pandas進行數(shù)據(jù)分析), These are the main tools for working with and visualizing data in Python, so you`ll need some experience with them.


Anaconda

Anaconda is a distribution of packages built for data science. It comes with conda, a package and environment manager. ?Using Anaconda will make your life working with data much more pleasant.

You`ll also use it to create virtual environments that make working on multiple projects much less mind-twisting. Package managers are used to install libraries and other software on your computer.

pip: default package manager for Python libraries. You can (and will) still use pip alongside conda to install packages.

Conda installs precompiled packages. For example: the Anaconda distribution comes with Numpy, Scipy and Scikit-learn compiled with MKL library(MKL Optimiations), speeding up various math operations.

Along with managing packages, Conda is also a virtual environment manager. it`s similar to virtualenv and pyenv, other popular environment managers.

pip export the list of packages in an environment to a file. allows other people to easily load all the dependencies for your code. pip freeze > requirements.txt

安裝與使用Anaconda

1铲掐、安裝之后需要進行全面更新 prevent future errors from out of date software. conda upgrade conda ?|| ?conda upgrade --all

Troubleshooting

If you are seeing the following "conda command not found" and are using ZShell, you have to do the following:?

? ?Add export PATH="/Users/username/anaconda/bin:$PATH" to your .zsh_config file.

Managing Packages

conda install package_name ==> ?conda install numpy || conda install numpy scipy pandas ?|| ?conda install numpy=1.10

有一種情況拾弃,scipy 依賴于numpy, 所以同時安裝 scipy 和 numpy ?有兩種方式:只安裝scipy(conda會自動安裝numpy),同時安裝scipy摆霉、numpy豪椿。

卸載:conda remove package_name.

更新: conda update package_name ?或 ?conda update --all

查看列表: conda list.

搜索:conda search search_term? ex: conda search beautifulsoup? (besutiful soup 是爬蟲利器)

Managing environments

創(chuàng)建環(huán)境,分離你的項目: conda create -n env_name list of packages, -n env_name

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ex --> conda create -n py3 python=3 or conda create -n py2 python=2 : ?These commands will install the most recent version of Python3 and 2, respectively, use python=3.3 to install specific version.?

Entering an environment?

? ? ? ?OSX/Linux: source activate my_env ? ?—— ?source deactivate

? ? ? ?Windows: activate my_env? ? ?—— deactivate


Saving and loading environments

sharing environments so others can install all the packages used in your code.

conda env export > environment.yaml? ?not using conda => pip freeze (requirements.txt)

then => ?conda env create -f environment.yaml?

check the env list: ?conda env list .

remove env: ?conda env remove -n env_name

YAML

is a human friendly data serialization standard for all programming languages.

一種直觀的能夠被電腦識別的數(shù)據(jù)序列化格式携栋,以數(shù)據(jù)為中心搭盾,一種可讀性高,并且容易被人類閱讀婉支、容易與驕傲本語言交互鸯隅,用來表達資料序列的編程語言


It works great for non-data related projects too like web apps with Flask.

The author have an environment for his personal blog using Pelican.

Want learn More? about conda and how it fits in the Python ecosystem, check Conda myths and misconceptions. And the conda documentation.

Last Note for students in the Data Analyst Nanodegree program.

Currently, most of the materials for this Nanodegree program are still guaranteed to work only for Python 2.7, You can quickly set up an environment for the current DAND(Data Analyst Nanodegree program) program by opening the Resources tab and downloading an appropriate YAML file.??

后期需要補數(shù)據(jù)分析的課程:

? ? ? ? ? ?數(shù)據(jù)分析

? ? ? ? ? ? ? ? 1.提出問題

? ? ? ? ? ? ? ? 2.整理數(shù)據(jù):可以用來解決問題的格式

? ? ? ? ? ? ? ? 3.探索數(shù)據(jù):找出數(shù)據(jù)中的模式,建立關于數(shù)據(jù)的直覺

? ? ? ? ? ? ? ? 4.得出結論或進行預測

? ? ? ? ? ? ? ? 5.數(shù)據(jù)類型:一維數(shù)據(jù)&二維數(shù)據(jù)



?

最后編輯于
?著作權歸作者所有,轉載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末向挖,一起剝皮案震驚了整個濱河市蝌以,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌何之,老刑警劉巖跟畅,帶你破解...
    沈念sama閱讀 212,185評論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異溶推,居然都是意外死亡徊件,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,445評論 3 385
  • 文/潘曉璐 我一進店門蒜危,熙熙樓的掌柜王于貴愁眉苦臉地迎上來虱痕,“玉大人,你說我怎么就攤上這事辐赞〔壳蹋” “怎么了?”我有些...
    開封第一講書人閱讀 157,684評論 0 348
  • 文/不壞的土叔 我叫張陵占拍,是天一觀的道長略就。 經(jīng)常有香客問我捎迫,道長,這世上最難降的妖魔是什么表牢? 我笑而不...
    開封第一講書人閱讀 56,564評論 1 284
  • 正文 為了忘掉前任窄绒,我火速辦了婚禮,結果婚禮上崔兴,老公的妹妹穿的比我還像新娘彰导。我一直安慰自己,他們只是感情好敲茄,可當我...
    茶點故事閱讀 65,681評論 6 386
  • 文/花漫 我一把揭開白布位谋。 她就那樣靜靜地躺著,像睡著了一般堰燎。 火紅的嫁衣襯著肌膚如雪掏父。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,874評論 1 290
  • 那天秆剪,我揣著相機與錄音赊淑,去河邊找鬼。 笑死仅讽,一個胖子當著我的面吹牛陶缺,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播洁灵,決...
    沈念sama閱讀 39,025評論 3 408
  • 文/蒼蘭香墨 我猛地睜開眼饱岸,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了徽千?” 一聲冷哼從身側響起苫费,我...
    開封第一講書人閱讀 37,761評論 0 268
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎罐栈,沒想到半個月后黍衙,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體泥畅,經(jīng)...
    沈念sama閱讀 44,217評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡荠诬,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,545評論 2 327
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了位仁。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片柑贞。...
    茶點故事閱讀 38,694評論 1 341
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖聂抢,靈堂內(nèi)的尸體忽然破棺而出钧嘶,到底是詐尸還是另有隱情,我是刑警寧澤琳疏,帶...
    沈念sama閱讀 34,351評論 4 332
  • 正文 年R本政府宣布有决,位于F島的核電站闸拿,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏书幕。R本人自食惡果不足惜新荤,卻給世界環(huán)境...
    茶點故事閱讀 39,988評論 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望台汇。 院中可真熱鬧苛骨,春花似錦、人聲如沸苟呐。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,778評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽牵素。三九已至严衬,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間笆呆,已是汗流浹背瞳步。 一陣腳步聲響...
    開封第一講書人閱讀 32,007評論 1 266
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留腰奋,地道東北人单起。 一個月前我還...
    沈念sama閱讀 46,427評論 2 360
  • 正文 我出身青樓,卻偏偏與公主長得像劣坊,于是被迫代替她去往敵國和親嘀倒。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 43,580評論 2 349

推薦閱讀更多精彩內(nèi)容

  • 初識仲尼是在一個偶然的下午,閑暇時光混跡于網(wǎng)上康二,那時正對一些情感小故事興趣萌生碳胳,便在微博上尋覓著一些情感作家,匆匆...
    漾兒閱讀 1,017評論 0 1
  • 歲月如梭沫勿,太過匆匆挨约,時光就在不經(jīng)意間流逝了。從翩翩少年到青年产雹,就好像做了一個夢诫惭,覺得好快好快。年少的輕狂與天真都不...
    燒火一條柴閱讀 1,174評論 2 2
  • 我是個閑人怨绣,所以日子過得很是隨性角溃,月初剛拍完胸脯立下目標,如何自律篮撑、學習开镣,到了月中緊接著就來了一場說走就走的旅行。...
    清雅_1314閱讀 495評論 6 8