首先查看當(dāng)前虛擬環(huán)境
conda env list
搜索python版本
conda search python
創(chuàng)建新的虛擬環(huán)境酱床,并定義python版本為3.8
conda create -n tensorflow-gpu_py38 python=3.8
切換進(jìn)入 tensorflow-gpu_py38 環(huán)境
conda activate tensorflow-gpu_py38
安裝 tensorflow-gpu叹俏,不指定具體版本由環(huán)境自動(dòng)決定最高兼容版本
conda install tensorflow-gpu
卸載舊版本cudatoolkit (cudnn焚鹊、tensorflow-gpu等被自動(dòng)卸載)
conda remove cudatoolkit
安裝指定新版本(搜索得出)
conda install cudatoolkit==11.1.1
conda install cudnn==8.1.0.77
再次安裝 tensorflow-gpu春畔,但是不兼容,無(wú)法正確安裝
conda install tensorflow-gpu
TensorRT官網(wǎng)下載鏈接(https://developer.nvidia.com/nvidia-tensorrt-7x-download)
TensorRT-7.2.3.4.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.1.tar.gz
解壓之后得到TensorRT-7.2.3.4目錄
pip install /home/sichange-ai/AI_TOOLS/CUDA/tensorRT/TensorRT-7.2.3.4/python/tensorrt-7.2.3.4-cp38-none-linux_x86_64.whl
在終端執(zhí)行添加環(huán)境變量,解決找不到"libcudnn.so.7"等共享庫(kù)問(wèn)題
export LD_LIBRARY_PATH=/home/sichange-ai/AI_TOOLS/CUDA/tensorRT/TensorRT-7.2.3.4/lib:/home/sichange-ai/aitools/anaconda3/envs/tensorflow-gpu_py38/lib
進(jìn)入python,執(zhí)行import tensorrt垄分,無(wú)報(bào)錯(cuò)信息
>>> import tensorrt
>>> print(tensorrt.__version__)
7.2.3.4
>>> assert tensorrt.Builder(tensorrt.Logger())
總結(jié)
1、打開(kāi)終端進(jìn)入環(huán)境
conda activate tensorflow-gpu_py38
2娃磺、更改環(huán)境變量
export LD_LIBRARY_PATH=/home/sichange-ai/AI_TOOLS/CUDA/tensorRT/TensorRT-7.2.3.4/lib:/home/sichange-ai/aitools/anaconda3/envs/tensorflow-gpu_py38/lib
3薄湿、進(jìn)入python
python
4、執(zhí)行
import tensorrt
>>> import tensorrt
>>> print(tensorrt.__version__)
7.2.3.4
>>> assert tensorrt.Builder(tensorrt.Logger())
參考資料(https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-723/quick-start-guide/index.html)