寫在前記:
總結(jié):相對(duì)于AsyncTask 比較常用的地方是用于IO密集型的咱揍,cpu占用率不會(huì)很高的地方
AsyncTask是什么
- android sdk 封裝的一個(gè)異步任務(wù)方案
- 模板類
- 提供了異步線程與UI線程的通信方式
實(shí)現(xiàn)方式
AsyncTask.java
public abstract class AyncTask<Params, Progress, Result>{
// 泛型的參數(shù)說明
// 1. Param 對(duì)應(yīng)excute 中傳遞參數(shù)的類型
// 2. Progress: 異步執(zhí)行過程中返回進(jìn)度值督暂, 例如下載進(jìn)度值的類型
// 3. Result: 異步任務(wù)執(zhí)行完成后的參數(shù)類型颅悉,doBackInBackground(param ...) 參數(shù)類型
}
先回顧一下并發(fā)的幾個(gè)接口
Callable, Runnable, Future, FutureTask
Callable && Runnable 兩者之間的區(qū)別是
- 在執(zhí)行任務(wù)后是否有返回值
- callable的返回值類型通過泛型的方式約定
public interface Runnable{
void run();
}
// 與runnable的區(qū)別在于,有返回值
public interface Callable<V>{
V call() throw Exception;
}
public interface ExecutorService{
<T> Future<T> submit(Callable<T> task)
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable tasl);
}
// future作用耿导,可以監(jiān)控目標(biāo)線程調(diào)用call赎离,當(dāng)調(diào)用get()的時(shí)候业踏,當(dāng)前線程開始阻塞禽炬,知道
public interface Future<V>{
bool cancel(bool mayInterruptIfRunning);
bool isCanceled();
V get();
V get(long timeout, TimeUnit unit);
}
public interface RunnableFuture<V> extends Runnable, Future<V>{
void run();
}
// RunnableFuture的實(shí)現(xiàn)類
public class FutureTask<V> impletements RunnableFuture<V>{
// 內(nèi)部維護(hù)了一個(gè)狀態(tài)機(jī)
// 一共7中,只會(huì)出現(xiàn)4中狀態(tài)變化
//情況1 NEW->COMPLETING->NORMAL
//情況2 NEW->COMPLETING->EXCEPTIONAL
//情況3 NEW->CANCELLED
//情況4 NEW->INTERRUPTING->INTERRUPTED
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
// 看get方法是如何實(shí)現(xiàn)阻塞的
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
// 根據(jù)state返回結(jié)果或者拋出異常
return report(s);
}
// 核心方法
// 該方法實(shí)現(xiàn)了自旋
// 具體實(shí)現(xiàn):
1)若支持中斷勤家,判斷當(dāng)前線程是否中斷
1.1)中斷腹尖,退出自旋,從WaitNode等待隊(duì)列中移除當(dāng)前節(jié)點(diǎn)
1.2)繼續(xù)下一步
2) 判斷當(dāng)前狀態(tài)是否完成伐脖,如完成[中斷热幔,或者正常完成或者取消]直接直接返回狀態(tài),并且將當(dāng)前的thread設(shè)置為null讼庇,否則進(jìn)入下一步
3)如果當(dāng)前狀態(tài)是正在完成中绎巨,暫時(shí)讓出cpu時(shí)間片,將線程從運(yùn)行態(tài)轉(zhuǎn)到就緒態(tài)蠕啄,否則進(jìn)入下一步
4) 構(gòu)造一個(gè)waitNode场勤, 插入到隊(duì)列中
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
if (s > COMPLETING) {
//退出
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING)
// 讓出時(shí)間片
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
// 將任務(wù)插入到隊(duì)列中
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
// locksupport park 阻塞對(duì)象, 等待LockSupport.park的調(diào)用返回,可以看到這個(gè)方法在finishCompletion中調(diào)用
LockSupport.park(this);
}
}
// 該方法在前面2-6狀態(tài)切換中都會(huì)被調(diào)用歼跟,正常的邏輯是在run方法中set()方法調(diào)用
private void finishCompletion() {
for (WaitNode q; (q = waiters) != null;) {
if (U.compareAndSwapObject(this, WAITERS, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
// 核心的地方和媳,這個(gè)地方會(huì)喚醒阻塞的對(duì)象
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
// 完成
done();
callable = null; // to reduce footprint
}
public void run() {
if (state != NEW ||
!U.compareAndSwapObject(this, RUNNER, null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
// 異常狀態(tài)
setException(ex);
}
if (ran)
// 正常狀態(tài)
set(result);
}
}
}
}
以上是在執(zhí)行g(shù)et方法被阻塞的原理
接下來看executor中的submit(Runnable)/submit(Callable) 如何返回 RunnableFuture<T>
class abstract class AbstractExecutorService implements ExecutorService{
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
}
}
// FutureTask 中是如何將runable 轉(zhuǎn)換成callable,通過適配器模式實(shí)現(xiàn)
public class Executors{
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
}
static class RunnableAdapter<T> implements Callcable<T>{
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
基于上述引入一個(gè)非常重要的鎖 LockSupport
LockSupport 的使用說明
- LockSupport.unpark()
- LockSupport.park()
LockSupport 的unpark和park無先后順序, 對(duì)于unpark在線哈街,則park不會(huì)阻塞留瞳,會(huì)直接返回
接下來分析一下Executors.java中的幾類線程池
- 區(qū)別: 核心線程數(shù) & 最大線程數(shù) & 容器的大小
先給結(jié)論:1.當(dāng)前存活線程數(shù)小于核心線程數(shù),則新建線程執(zhí)行任務(wù)骚秦,2.當(dāng)前核心線程都在忙她倘,任務(wù)會(huì)放進(jìn)隊(duì)列中,
- 如果隊(duì)列溢出作箍,則新建線程硬梁,如果新建線程數(shù)大于最大線程數(shù),則reject
上代碼:
class ThreadPoolExecutor{
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
// 是一個(gè)原子操作的interger變量胞得,低29位存儲(chǔ)線程數(shù)量荧止,高三位存儲(chǔ)線程池的狀態(tài)
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
}
未完成待續(xù)...