概述: 本節(jié)主要講述圖像在OpenCV中的表示,以及Mat類的構造方式;
一. OpenCV 簡介:
OpenCV 的全稱是 Open Source Computer Vision Library库快,是一個開放源代碼的 計算機視覺庫坎炼。OpenCV 是最初由英特爾公司發(fā)起并開發(fā),以 BSD 許可證授權發(fā) 行观游,可以在商業(yè)和研究領域中免費使用,現(xiàn)在美國 Willow Garage 為 OpenCV 供主要的支持辕狰。OpenCV 可用于開發(fā)實時的圖像處理达舒、計算機視覺以及模式識別 程序,目前在工業(yè)界以及科研領域廣泛采用;
二.OpenCV中圖像的表示:
在OpenCV中圖像以矩陣( Mat類 )的形式表示,矩 陣元素的值表示這個位置上的像素的亮度沮稚,一般來說像素值越大表示該點越 亮。如圖 2.1 :
一般來說册舞,灰度圖用 2 維矩陣表示蕴掏,彩色(多通道)圖像用 3 維矩陣(M × N × 3)表示。對于圖像顯示來說环础,目前大部分設備都是用無符號 8 位整 數(shù)(類型為 CV_8UC(n))表示像素亮度囚似。(n 為通道數(shù))
圖像數(shù)據(jù)在計算機內存中的存儲順序為以圖像最左上點(也可能是最左下 點)開始剩拢,存儲如表 2-2 所示:
灰度圖存儲示意圖:
i00 | i00 | i00 | i00 |
i00 | i00 | i00 | i00 |
i00 | i00 | i00 | i00 |
i00 | i00 | i00 | i00 |
iij 表示第 i 行 j 列的像素值线得。如果是多通道圖像,比如 RGB 圖像徐伐,則每個 像素用三個字節(jié)表示贯钩。在 OpenCV 中,RGB 圖像的通道順序為 BGR;三通道BGR圖表示:
三. Mat 類:
早期的 OpenCV 中办素,使用 IplImage 和 CvMat 數(shù)據(jù)結構來表示圖像角雷。IplImage 和 CvMat 都是 C 語言的結構。使用這兩個結構的問題是內存需要手動管理性穿,開 發(fā)者必須清楚的知道何時需要申請內存勺三,何時需要釋放內存。這個開發(fā)者帶來了 一定的負擔需曾,開發(fā)者應該將更多精力用于算法設計吗坚,因此在新版本的 OpenCV 中 引入了 Mat 類。
新加入的 Mat 類能夠自動管理內存呆万。使用 Mat 類商源,你不再需要花費大量精 力在內存管理上。而且你的代碼會變得很簡潔谋减,代碼行數(shù)會變少牡彻。但 C++接口唯 一的不足是當前一些嵌入式開發(fā)系統(tǒng)可能只支持 C 語言,如果你的開發(fā)平臺支持 C++出爹,完全沒有必要再用 IplImage 和 CvMat庄吼。在新版本的 OpenCV 中,開發(fā)者依 然可以使用 IplImage 和 CvMat严就,但是一些新增加的函數(shù)只 供了 Mat 接口霸褒。本書 中的例程也都將采用新的 Mat 類,不再介紹 IplImage 和 CvMat盈蛮。
Mat 類的定義如下所示废菱,關鍵的屬性如下方代碼所示:
class CV_EXPORTS Mat
{
public:
//一系列函數(shù) ...
/* flag 參數(shù)中包含許多關于矩陣的信息技矮,如: -Mat 的標識
-數(shù)據(jù)是否連續(xù)
-深度
-通道數(shù)目
*/
int flags;
//矩陣的維數(shù),取值應該大于或等于 2
int dims;
//矩陣的行數(shù)和列數(shù)殊轴,如果矩陣超過 2 維衰倦,這兩個變量的值都為-1
int rows, cols;
//指向數(shù)據(jù)的指針
uchar* data;
//指向引用計數(shù)的指針 //如果數(shù)據(jù)是由用戶分配的,則為 NULL
int* refcount;
...
};
四.Mat 類的創(chuàng)建:
4.1 構造方法:
Mat 類 供了一系列構造函數(shù)旁理,可以方便的根據(jù)需要創(chuàng)建 Mat 對象樊零。下面是 一個使用構造函數(shù)創(chuàng)建對象的例子。
Mat M(3,2, CV_8UC3, Scalar(0,0,255));
cout << "M = " << endl << " " << M << endl;
第一行代碼創(chuàng)建一個rows = 3孽文,cosl = 2 的圖像驻襟,圖像元 素是 8 位無符號整數(shù)類型,且有三個通道芋哭。圖像的所有像素值被初始化為(0, 0, 255)沉衣。由于 OpenCV 中默認的顏色順序為 BGR,因此這是一個全紅的圖像减牺。
該段代碼創(chuàng)建的矩陣M如下:
Mat類常用構造方法:
常用的構造函數(shù)有:
Mat::Mat() 無參數(shù)構造方法;
Mat::Mat(int rows, int cols, int type)
創(chuàng)建行數(shù)為 rows豌习,列數(shù)為 col,類型為 type 的圖像;Mat::Mat(Size size, int type)
創(chuàng)建大小為 size拔疚,類型為 type 的圖像;-
Mat::Mat(int rows, int cols, int type, const Scalar& s) 24
創(chuàng)建行數(shù)為 rows肥隆,列數(shù)為 col,類型為 type 的圖像稚失,并將所有元素初始 化為值 s;
Mat::Mat(Size size, int type, const Scalar& s)
創(chuàng)建大小為 size栋艳,類型為 type 的圖像,并將所有元素初始化為值 s;Mat::Mat(const Mat& m)
將 m 賦值給新創(chuàng)建的對象句各,此處不會對圖像數(shù)據(jù)進行復制吸占,m 和新對象 共用圖像數(shù)據(jù);Mat::Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP) 創(chuàng)建行數(shù)為 rows,列數(shù)為 col诫钓,類型為 type 的圖像旬昭,此構造函數(shù)不創(chuàng)建 圖像數(shù)據(jù)所需內存,而是直接使用 data 所指內存菌湃,圖像的行步長由 step 指定问拘。
Mat::Mat(Size size, int type, void* data, size_t step=AUTO_STEP) 創(chuàng)建大小為 size,類型為 type 的圖像惧所,此構造函數(shù)不創(chuàng)建圖像數(shù)據(jù)所需 內存骤坐,而是直接使用 data 所指內存,圖像的行步長由 step 指定下愈。
Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange) 創(chuàng)建的新圖像為 m 的一部分纽绍,具體的范圍由 rowRange 和 colRange 指 定,此構造函數(shù)也不進行圖像數(shù)據(jù)的復制操作势似,新圖像與 m 共用圖像數(shù) 據(jù);
Mat::Mat(const Mat& m, const Rect& roi)
創(chuàng)建的新圖像為 m 的一部分拌夏,具體的范圍 roi 指定僧著,此構造函數(shù)也不進 行圖像數(shù)據(jù)的復制操作,新圖像與 m 共用圖像數(shù)據(jù)障簿。
這些構造函數(shù)中盹愚,很多都涉及到類型 type。type 可以是 CV_8UC1站故,CV_16SC1皆怕,..., CV_64FC4 等西篓。里面的 8U 表示 8 位無符號整數(shù)愈腾,16S 表示 16 位有符號整數(shù),64F 表示 64 位浮點數(shù)(即 double 類型);C 后面的數(shù)表示通道數(shù)岂津,例如 C1 表示一個 通道的圖像虱黄,C4 表示 4 個通道的圖像,以此類推寸爆。
如果你需要更多的通道數(shù)礁鲁,需要用宏 CV_8UC(n)盐欺,例如:
Mat M(3,2, CV_8UC(5));//創(chuàng)建行數(shù)為3赁豆,列數(shù)為2,通道數(shù)為5的圖像;
其中rowRang/colRang表達范圍為半閉半開區(qū)間,例如 cv::Rang(0,3)表示的范圍為[0,3),即包含0單不包括3;
4.2 create()函數(shù)創(chuàng)建對象
//! allocates new matrix data unless the matrix already has specified size and type.
// previous data is unreferenced if needed.
void create(int rows, int cols, int type);
void create(Size size, int type);
void create(int ndims, const int* sizes, int type);
除了在構造函數(shù)中可以創(chuàng)建圖像冗美,也可以使用 Mat 類的 create()函數(shù)創(chuàng)建圖 像魔种。如果 create()函數(shù)指定的參數(shù)與圖像之前的參數(shù)相同,則不進行實質的內存 申請操作;如果參數(shù)不同粉洼,則減少原始數(shù)據(jù)內存的索引节预,并重新申請內存。使用 方法如下:
Mat M(2,2, CV_8UC3);//構造函數(shù)創(chuàng)建圖像
M.create(3,2, CV_8UC2);//釋放內存重新創(chuàng)建圖像
需要注意的時属韧,使用 create()函數(shù)無法設置圖像像素的初始值;
4.3Matlab 風格的創(chuàng)建對象方法:
//! Matlab-style matrix initialization
static MatExpr zeros(int rows, int cols, int type);
static MatExpr zeros(Size size, int type);
static MatExpr zeros(int ndims, const int* sz, int type);
static MatExpr ones(int rows, int cols, int type);
static MatExpr ones(Size size, int type);
static MatExpr ones(int ndims, const int* sz, int type);
static MatExpr eye(int rows, int cols, int type);
static MatExpr eye(Size size, int type);
使用方法如下:
Mat Z = Mat::zeros(2,3, CV_8UC1); // 0矩陣
cout << "Z = " << endl << " " << Z << endl;
Mat O = Mat::ones(2, 3, CV_32F); // 全1矩陣
cout << "O = " << endl << " " << O << endl;
Mat E = Mat::eye(2, 3, CV_64F); // 單位矩陣
cout << "E = " << endl << " " << E << endl;
輸出結果如下:
五.矩陣的基本元素表達:
對于單通道圖像安拟,其元素類型一般為 8U(即 8 位無符號整數(shù)),當然也可以 是 16S宵喂、32F 等;這些類型可以直接用 uchar糠赦、short、float 等 C/C++語言中的基本 數(shù)據(jù)類型表達锅棕。
如果多通道圖像拙泽,如 RGB 彩色圖像,需要用三個通道來表示裸燎。在這種情況 下顾瞻,如果依然將圖像視作一個二維矩陣,那么矩陣的元素不再是基本的數(shù)據(jù)類型德绿。OpenCV 中有模板類 Vec荷荤,可以表示一個向量退渗。OpenCV 中使用 Vec 類預定義了一 些小向量,可以將之用于矩陣元素的表達蕴纳。
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
例如 8U 類型的 RGB 彩色圖像可以使用 Vec3b氓辣,3 通道 float 類型的矩陣可以 使用 Vec3f。
對于 Vec 對象袱蚓,可以使用[]符號如操作數(shù)組般讀寫其元素钞啸,如:
Vec3b color; //用 color 變量 述一種 RGB 顏色
color[0]=255; //B 分量
color[1]=0; //G分量
color[2]=0; //R分量
六. 矩陣輸出格式:
cv::Mat temp = (cv::Mat_<char>(3,3) << 1,2,3,4,5,6,7,8,9);
std::cout << "temp Default : "<< temp << std::endl;
std::cout << "temp python : "<< cv::format(temp,"python") << std::endl;
std::cout << "temp CSV : "<< cv::format(temp,"csv") << std::endl;
std::cout << "temp numpy : "<< cv::format(temp,"numpy") << std::endl;
std::cout << "temp C : "<< cv::format(temp,"C") << std::endl;
temp Default : [1, 2, 3;
4, 5, 6;
7, 8, 9]
temp python : [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
temp CSV : 1, 2, 3
4, 5, 6
7, 8, 9
temp numpy : array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]],
type='int8')
temp C : {1, 2, 3,
4, 5, 6,
7, 8, 9}