Kaggle winner 方案簡介 | Understanding the Amazon from Space: 1st place

Below is a brief introduction of the 1st place winner solution to the competition : Understanding the Amazon from Space

The target of this competition is to better track and understand causes of deforestation by analyzing the satellite images from the Amazon basin .

This competition contains over 40,000 training images, and what we need to do is to label them.

There are 17 labels from the following 3 groups:

  • Atmospheric conditions: clear, partly cloudy, cloudy, and haze
  • Common land cover and land use types: rainforest, agriculture, rivers, towns/cities, roads, cultivation, and bare ground
  • Rare land cover and land use types: slash and burn, selective logging, blooming, conventional mining, artisanal mining, and blow down

And each image could contain multiple labels.


This is a multiple classification problem, and the labels are imbalanced.

The 1st place winner is bestfittinghttps://www.kaggle.com/bestfitting

In preprocessing section, he applies haze removal technique and resizing, as well as some data augmentation steps, such as flipping, rotating, transposing, and elastic transforming.

As to the models, his ensemble consists of 11 popular convolutional networks which is a mixture of ResNets, DenseNets, Inception, SimpleNet with various parameters and layers. Each model is to predict the 17 labels' probabilities.

Since there is a correlation among the 17 labels, such as, the clear, partly cloudy, cloudy, and haze labels are disjoint, but habitation and agriculture labels appear together quite frequently.

And he wants to make use of this structure, he implements two-level Ridge Regression.

One is to take advantage of the relations among the 17 labels:
That is for a single model, he takes in this model’s predictions of all 17 labels as features to predict the final probability for each of the 17 labels.

Another one is to select the best model to predict each label:

One more special technique is to write a his own Soft F2-Loss function, since the standard F2 loss function doesn't allow his models to pay more attention to optimizing each label’s recall.

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末缓窜,一起剝皮案震驚了整個濱河市寝蹈,隨后出現(xiàn)的幾起案子穴店,更是在濱河造成了極大的恐慌,老刑警劉巖怀喉,帶你破解...
    沈念sama閱讀 211,123評論 6 490
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡躺涝,警方通過查閱死者的電腦和手機伟骨,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,031評論 2 384
  • 文/潘曉璐 我一進店門饮潦,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人携狭,你說我怎么就攤上這事继蜡。” “怎么了?”我有些...
    開封第一講書人閱讀 156,723評論 0 345
  • 文/不壞的土叔 我叫張陵稀并,是天一觀的道長仅颇。 經(jīng)常有香客問我,道長碘举,這世上最難降的妖魔是什么忘瓦? 我笑而不...
    開封第一講書人閱讀 56,357評論 1 283
  • 正文 為了忘掉前任,我火速辦了婚禮引颈,結(jié)果婚禮上政冻,老公的妹妹穿的比我還像新娘。我一直安慰自己线欲,他們只是感情好明场,可當(dāng)我...
    茶點故事閱讀 65,412評論 5 384
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著李丰,像睡著了一般苦锨。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上趴泌,一...
    開封第一講書人閱讀 49,760評論 1 289
  • 那天舟舒,我揣著相機與錄音,去河邊找鬼嗜憔。 笑死秃励,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的吉捶。 我是一名探鬼主播夺鲜,決...
    沈念sama閱讀 38,904評論 3 405
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼呐舔!你這毒婦竟也來了币励?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 37,672評論 0 266
  • 序言:老撾萬榮一對情侶失蹤珊拼,失蹤者是張志新(化名)和其女友劉穎食呻,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體澎现,經(jīng)...
    沈念sama閱讀 44,118評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡仅胞,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,456評論 2 325
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了剑辫。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片干旧。...
    茶點故事閱讀 38,599評論 1 340
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖揭斧,靈堂內(nèi)的尸體忽然破棺而出莱革,到底是詐尸還是另有隱情峻堰,我是刑警寧澤,帶...
    沈念sama閱讀 34,264評論 4 328
  • 正文 年R本政府宣布盅视,位于F島的核電站捐名,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏闹击。R本人自食惡果不足惜镶蹋,卻給世界環(huán)境...
    茶點故事閱讀 39,857評論 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望赏半。 院中可真熱鬧贺归,春花似錦、人聲如沸断箫。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,731評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽仲义。三九已至婶熬,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間埃撵,已是汗流浹背赵颅。 一陣腳步聲響...
    開封第一講書人閱讀 31,956評論 1 264
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留暂刘,地道東北人饺谬。 一個月前我還...
    沈念sama閱讀 46,286評論 2 360
  • 正文 我出身青樓,卻偏偏與公主長得像谣拣,于是被迫代替她去往敵國和親募寨。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 43,465評論 2 348

推薦閱讀更多精彩內(nèi)容