bandit-switch cost

Recently I am studying bandit problem with switching cost. Recall a bandit problem is to play an online game against an adversary. On every round t, you can choose an arm to play from K arms and then suffer a loss coming from adversary.?

For stochastic bandit, every loss/reward coming from same arm is from same distribution. And to estimate the regret, we need to estimate means from sample rewards and also number of arms being pulled. For adversarial bandit, it doesn't have such a condition. Every round, the adversary will pick one loss vector and player choose one arm and suffers corresponding loss. To estimate regret, usually one maintains a probability distribution over all arms, chooses arms according to the probability distribution and then updates probability distribution according to the received loss.

There is a variant of bandit problem that player will suffer an additional switch cost if the chosen arm at this round is different from last round. This condition will restrict player's choice to let her much more prefers staying at the same arm. But this topic will be hard if the adversary is non-oblivious, that is, it will remember player's past choices. If player fixes one arm in the past, the adversary will probably give more loss on this arm in the next round. Even though it will result in a very bad grade to stick on one arm, it can still be regarded as a baseline, that is, we can compare performance of designed strategies against constant arm.

For adversarial bandit problem with switch cost against an oblivious adversary, the upper bound of policy regret which compares to best constant strategy is O(T^{2/3}). And last year Dekel proved minimax regret has same lower bound. So adversarial bandit with switch cost has lower regret bound meet upper bound and therefore, there is no great interest to explore this area. For stochastic oblivious adversarial where every loss/reward all coming from one fixed distribution with different parameters, it has been proved the upper bound is O(log T).

Next the research area might be extended to m-memory-bounded adversary not restricted on only switch cost.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市贮缕,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌瘫辩,老刑警劉巖,帶你破解...
    沈念sama閱讀 206,311評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件坛悉,死亡現(xiàn)場(chǎng)離奇詭異伐厌,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)吹散,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,339評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門弧械,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)八酒,“玉大人空民,你說(shuō)我怎么就攤上這事⌒呙裕” “怎么了界轩?”我有些...
    開(kāi)封第一講書(shū)人閱讀 152,671評(píng)論 0 342
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)衔瓮。 經(jīng)常有香客問(wèn)我浊猾,道長(zhǎng),這世上最難降的妖魔是什么热鞍? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 55,252評(píng)論 1 279
  • 正文 為了忘掉前任葫慎,我火速辦了婚禮,結(jié)果婚禮上薇宠,老公的妹妹穿的比我還像新娘偷办。我一直安慰自己,他們只是感情好澄港,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,253評(píng)論 5 371
  • 文/花漫 我一把揭開(kāi)白布椒涯。 她就那樣靜靜地躺著,像睡著了一般回梧。 火紅的嫁衣襯著肌膚如雪废岂。 梳的紋絲不亂的頭發(fā)上祖搓,一...
    開(kāi)封第一講書(shū)人閱讀 49,031評(píng)論 1 285
  • 那天,我揣著相機(jī)與錄音湖苞,去河邊找鬼拯欧。 笑死,一個(gè)胖子當(dāng)著我的面吹牛财骨,可吹牛的內(nèi)容都是我干的哈扮。 我是一名探鬼主播,決...
    沈念sama閱讀 38,340評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼蚓再,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼滑肉!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起摘仅,我...
    開(kāi)封第一講書(shū)人閱讀 36,973評(píng)論 0 259
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤靶庙,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后娃属,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體六荒,經(jīng)...
    沈念sama閱讀 43,466評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,937評(píng)論 2 323
  • 正文 我和宋清朗相戀三年矾端,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了掏击。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 38,039評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡秩铆,死狀恐怖砚亭,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情殴玛,我是刑警寧澤捅膘,帶...
    沈念sama閱讀 33,701評(píng)論 4 323
  • 正文 年R本政府宣布,位于F島的核電站滚粟,受9級(jí)特大地震影響寻仗,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜凡壤,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,254評(píng)論 3 307
  • 文/蒙蒙 一署尤、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧亚侠,春花似錦曹体、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,259評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至,卻和暖如春究孕,著一層夾襖步出監(jiān)牢的瞬間啥酱,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,485評(píng)論 1 262
  • 我被黑心中介騙來(lái)泰國(guó)打工厨诸, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留镶殷,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 45,497評(píng)論 2 354
  • 正文 我出身青樓微酬,卻偏偏與公主長(zhǎng)得像绘趋,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子颗管,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,786評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容