Udacity_數(shù)據(jù)分析之用Numpy和Pandas分析二維數(shù)組

1慷彤、DataFrame返回最大行并求這行的平均值和總平均值

  • pandas里面的DataFrame生成數(shù)據(jù)
import pandas as pd

# Subway ridership for 5 stations on 10 different days
ridership_df = pd.DataFrame(
    data=[[   0,    0,    2,    5,    0],
          [1478, 3877, 3674, 2328, 2539],
          [1613, 4088, 3991, 6461, 2691],
          [1560, 3392, 3826, 4787, 2613],
          [1608, 4802, 3932, 4477, 2705],
          [1576, 3933, 3909, 4979, 2685],
          [  95,  229,  255,  496,  201],
          [   2,    0,    1,   27,    0],
          [1438, 3785, 3589, 4174, 2215],
          [1342, 4043, 4009, 4665, 3033]],
    index=['05-01-11', '05-02-11', '05-03-11', '05-04-11', '05-05-11',
           '05-06-11', '05-07-11', '05-08-11', '05-09-11', '05-10-11'],
    columns=['R003', 'R004', 'R005', 'R006', 'R007']
)
  • 求總平均值和最大行平均值的函數(shù)
def mean_riders_for_max_station(ridership):
    '''
    Fill in this function to find the station with the maximum riders on the
    first day, then return the mean riders per day for that station. Also
    return the mean ridership overall for comparsion.
    
    This is the same as a previous exercise, but this time the
    input is a Pandas DataFrame rather than a 2D NumPy array.
    '''
    max_station = ridership.iloc[0].argmax() 
    mean_for_max = ridership[max_station].mean()
    overall_mean = ridership.values.mean()
    return (overall_mean, mean_for_max)
mean_riders_for_max_station(ridership_df)

2、array返回最大行并求這行的平均值和總平均值

import numpy as np

# Subway ridership for 5 stations on 10 different days
ridership = np.array([
    [   0,    0,    2,    5,    0],
    [1478, 3877, 3674, 2328, 2539],
    [1613, 4088, 3991, 6461, 2691],
    [1560, 3392, 3826, 4787, 2613],
    [1608, 4802, 3932, 4477, 2705],
    [1576, 3933, 3909, 4979, 2685],
    [  95,  229,  255,  496,  201],
    [   2,    0,    1,   27,    0],
    [1438, 3785, 3589, 4174, 2215],
    [1342, 4043, 4009, 4665, 3033]
])
def mean_riders_for_max_station(ridership):
    '''
    Fill in this function to find the station with the maximum riders on the
    first day, then return the mean riders per day for that station. Also
    return the mean ridership overall for comparsion.
    
    Hint: NumPy's argmax() function might be useful:
    http://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html
    '''
    max_station = ridership[0,:].argmax()
    mean_for_max = ridership[:,max_station].mean()
    overall_mean = ridership.mean()
    return (overall_mean, mean_for_max)
  • 以上輸出結(jié)果都是:

(2342.5999999999999, 3239.9)

3宙地、DataFrame向量化運(yùn)算

# --- Quiz ---
# Cumulative entries and exits for one station for a few hours.
entries_and_exits = pd.DataFrame({
    'ENTRIESn': [3144312, 3144335, 3144353, 3144424, 3144594,
                 3144808, 3144895, 3144905, 3144941, 3145094],
    'EXITSn': [1088151, 1088159, 1088177, 1088231, 1088275,
               1088317, 1088328, 1088331, 1088420, 1088753]
})
#計算每小時進(jìn)出人數(shù)的函數(shù)
def get_hourly_entries_and_exits(entries_and_exits):
    return entries_and_exits - entries_and_exits.shift(1)
get_hourly_entries_and_exits(entries_and_exits)
  • 輸出結(jié)果:
ENTRIESn    EXITSn
0   NaN     NaN
1   23.0    8.0
2   18.0    18.0
3   71.0    54.0
4   170.0   44.0
5   214.0   42.0
6   87.0    11.0
7   10.0    3.0
8   36.0    89.0
9   153.0   333.0

4、DataFrame applymap

  • 使用示例
import pandas as pd
if True:
    df = pd.DataFrame({
        'a': [1, 2, 3],
        'b': [10, 20, 30],
        'c': [5, 10, 15]
    })
    def add_one(x):
        return x + 1
    print(df.applymap(add_one))
  • 輸出結(jié)果:
   a   b   c
0  2  11   6
1  3  21  11
2  4  31  16
  • 把分?jǐn)?shù)轉(zhuǎn)化為等級

The conversion rule is:
90-100 -> A
80-89 -> B
70-79 -> C
60-69 -> D
0-59 -> F

  • 實(shí)現(xiàn)函數(shù):
grades_df = pd.DataFrame(
    data={'exam1': [43, 81, 78, 75, 89, 70, 91, 65, 98, 87],
          'exam2': [24, 63, 56, 56, 67, 51, 79, 46, 72, 60]},
    index=['Andre', 'Barry', 'Chris', 'Dan', 'Emilio', 
           'Fred', 'Greta', 'Humbert', 'Ivan', 'James']
)    
def convert_grade(grade):
    if grade >= 90:
        return 'A'
    elif grade >= 80:
        return 'B'
    elif grade >= 70:
        return 'C'
    elif grade >= 60:
        return 'D'
    else:
        return 'F'
def convert_grades(grades):
    return grades.applymap(convert_grade)
print(grades_df)
convert_grades(grades_df)
  • 輸出結(jié)果:
         exam1  exam2
Andre       43     24
Barry       81     63
Chris       78     56
Dan         75     56
Emilio      89     67
Fred        70     51
Greta       91     79
Humbert     65     46
Ivan        98     72
James       87     60
----------------------------
    exam1 exam2
Andre   F   F
Barry   B   D
Chris   C   F
Dan     C   F
Emilio  B   D
Fred    C   F
Greta   A   C
Humbert D   F
Ivan    A   C
James   B   D

5、DataFrame apply

案例1:
import pandas as pd

grades_df = pd.DataFrame(
    data={'exam1': [43, 81, 78, 75, 89, 70, 91, 65, 98, 87],
          'exam2': [24, 63, 56, 56, 67, 51, 79, 46, 72, 60]},
    index=['Andre', 'Barry', 'Chris', 'Dan', 'Emilio', 
           'Fred', 'Greta', 'Humbert', 'Ivan', 'James']
)

# Change False to True for this block of code to see what it does

# DataFrame apply()
if True:
    def convert_grades_curve(exam_grades):
        # Pandas has a bult-in function that will perform this calculation
        # This will give the bottom 0% to 10% of students the grade 'F',
        # 10% to 20% the grade 'D', and so on. You can read more about
        # the qcut() function here:
        # http://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html
        return pd.qcut(exam_grades,
                       [0, 0.1, 0.2, 0.5, 0.8, 1],
                       labels=['F', 'D', 'C', 'B', 'A'])
        
    # qcut() operates on a list, array, or Series. This is the
    # result of running the function on a single column of the
    # DataFrame.
    
    # qcut() does not work on DataFrames, but we can use apply()
    # to call the function on each column separately
    
def standardize(df):
    '''
    Fill in this function to standardize each column of the given
    DataFrame. To standardize a variable, convert each value to the
    number of standard deviations it is above or below the mean.
    '''
    return df.apply(standardize_column)
def standardize_column(column):
    return (column-column.mean())/column.std()
  • 輸出 exam1的等級:
    print(convert_grades_curve(grades_df['exam1']))
Andre      F
Barry      B
Chris      C
Dan        C
Emilio     B
Fred       C
Greta      A
Humbert    D
Ivan       A
James      B
Name: exam1, dtype: category
Categories (5, object): [F < D < C < B < A]
  • grades_df分?jǐn)?shù)轉(zhuǎn)化為等級:
    print(grades_df.apply(convert_grades_curve))
        exam1 exam2
Andre       F     F
Barry       B     B
Chris       C     C
Dan         C     C
Emilio      B     B
Fred        C     C
Greta       A     A
Humbert     D     D
Ivan        A     A
James       B     B
  • 標(biāo)準(zhǔn)化:
    standardize(grades_df)

          exam1      exam2
Andre  -2.196525    -2.186335
Barry   0.208891     0.366571
Chris   0.018990    -0.091643
Dan    -0.170911    -0.091643
Emilio  0.715295     0.628408
Fred   -0.487413    -0.418938
Greta   0.841896     1.413917
Humbert-0.803916    -0.746234
Ivan    1.284999     0.955703
James   0.588694     0.170194
案例2:
  • 1蹦漠、輸出每列中的最大值和平均值:
import numpy as np
import pandas as pd

df = pd.DataFrame({
    'a': [4, 5, 3, 1, 2],
    'b': [20, 10, 40, 50, 30],
    'c': [25, 20, 5, 15, 10]
})

# Change False to True for this block of code to see what it does

# DataFrame apply() - use case 2
if True:   
    print(df.apply(np.mean))
    print(df.apply(np.max))
  • 輸出結(jié)果:
a     3.0
b    30.0
c    15.0
dtype: float64
a     5
b    50
c    25
dtype: int64
  • 2、輸出每列中的第二大值
def second_largest_in_column(column):
    sorted_column = column.sort_values(ascending = False)
    return sorted_column.iloc[1]
def second_largest(df):
    '''
    Fill in this function to return the second-largest value of each 
    column of the input DataFrame.
    '''
    
    return df.apply(second_largest_in_column)
second_largest(df)
  • 輸出結(jié)果:
a     4
b    40
c    20
dtype: int64

6露乏、向Series中添加DataFrame

  1. 直接相加
import pandas as pd

# Adding using +
if True:
    s = pd.Series([1, 2, 3, 4])
    df = pd.DataFrame({
        0: [10, 20, 30, 40],
        1: [50, 60, 70, 80],
        2: [90, 100, 110, 120],
        3: [130, 140, 150, 160]
    })
    
    print(df)
    print('') # Create a blank line between outputs
    print(df + s)
  • 輸出
    0   1    2    3
0  10  50   90  130
1  20  60  100  140
2  30  70  110  150
3  40  80  120  160

    0   1    2    3
0  11  52   93  134
1  21  62  103  144
2  31  72  113  154
3  41  82  123  164
  1. index相加
# Adding with axis='index'
if True:
    s = pd.Series([1, 2, 3, 4])
    df = pd.DataFrame({
        0: [10, 20, 30, 40],
        1: [50, 60, 70, 80],
        2: [90, 100, 110, 120],
        3: [130, 140, 150, 160]
    })
    
    print(df)
    print('') # Create a blank line between outputs
    print(df.add(s, axis='index'))
    # The functions sub(), mul(), and div() work similarly to add()
  • 輸出:
    0   1    2    3
0  10  50   90  130
1  20  60  100  140
2  30  70  110  150
3  40  80  120  160

    0   1    2    3
0  11  51   91  131
1  22  62  102  142
2  33  73  113  153
3  44  84  124  164
  1. column相加
# Adding with axis='columns'
s = pd.Series([1,2,3,4])
df = pd.DataFrame({
    0: [10, 20, 30, 40],
    1: [50, 60, 70, 80],
    2: [90, 100, 110, 120],
    3: [130, 140, 150, 160]
})

print (df)
print ('') # Create a blank line between outputs
print (df.add(s, axis='columns'))
# The functions sub(), mul(), and div() work similarly to add()
  • 輸出:
0   1    2    3
0  10  50   90  130
1  20  60  100  140
2  30  70  110  150
3  40  80  120  160

    0   1    2    3
0  11  52   93  134
1  21  62  103  144
2  31  72  113  154
3  41  82  123  164

7碧浊、標(biāo)準(zhǔn)化DateFrame的行

  • 數(shù)據(jù)
grades_df = pd.DataFrame(
    data={'exam1': [43, 81, 78, 75, 89, 70, 91, 65, 98, 87],
          'exam2': [24, 63, 56, 56, 67, 51, 79, 46, 72, 60]},
    index=['Andre', 'Barry', 'Chris', 'Dan', 'Emilio', 
           'Fred', 'Greta', 'Humbert', 'Ivan', 'James']
)
  • grades_df輸出:
    exam1   exam2
Andre   43  24
Barry   81  63
Chris   78  56
Dan     75  56
Emilio  89  67
Fred    70  51
Greta   91  79
Humbert 65  46
Ivan    98  72
James   87  60
  • grades_df.mean()的輸出:
# 默認(rèn)輸出的是按index計算的平均值
exam1    77.7
exam2    57.4
dtype: float64
  • grades_df.mean(axis='columns')的輸出:
# 指定按columns輸出平均值
Andre      33.5
Barry      72.0
Chris      67.0
Dan        65.5
Emilio     78.0
Fred       60.5
Greta      85.0
Humbert    55.5
Ivan       85.0
James      73.5
dtype: float64
  • 計算每人的兩次成績與兩次成績平均值的偏差并標(biāo)準(zhǔn)化:
    mean_diffs =grades_df.sub(grades_df.mean(axis='columns'),axis='index'
         exam1  exam2
Andre      9.5   -9.5
Barry      9.0   -9.0
Chris     11.0  -11.0
Dan        9.5   -9.5
Emilio    11.0  -11.0
Fred       9.5   -9.5
Greta      6.0   -6.0
Humbert    9.5   -9.5
Ivan      13.0  -13.0
James     13.5  -13.5

mean_diffs.div(grades_df.std(axis='columns'),axis='index')

    exam1   exam2
Andre   0.707107    -0.707107
Barry   0.707107    -0.707107
Chris   0.707107    -0.707107
Dan     0.707107    -0.707107
Emilio  0.707107    -0.707107
Fred    0.707107    -0.707107
Greta   0.707107    -0.707107
Humbert 0.707107    -0.707107
Ivan    0.707107    -0.707107
James   0.707107    -0.707107

8、DataFramegroupby的使用

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
values = np.array([1, 3, 2, 4, 1, 6, 4])
example_df = pd.DataFrame({
    'value': values,
    'even': values % 2 == 0,
    'above_three': values > 3 
}, index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])
  1. print (example_df)輸出結(jié)果:
above_three   even  value
a       False  False      1
b       False  False      3
c       False   True      2
d        True   True      4
e       False  False      1
f        True   True      6
g        True   True      4
  1. even分組:
grouped_data = example_df.groupby('even')
    # The groups attribute is a dictionary mapping keys to lists of row indexes
print(grouped_data.groups)
  • 輸出結(jié)果:
{False: ['a', 'b', 'e'], True: ['c', 'd', 'f', 'g']}
  1. evenabove_three分組:
grouped_data = example_df.groupby(['even', 'above_three'])
print(grouped_data.groups)
  • 輸出結(jié)果:
{(True, False): ['c'], (False, False): ['a', 'b', 'e'], (True, True): ['d', 'f', 'g']}
  1. 求每個group的和
grouped_data = example_df.groupby('even')
print(grouped_data.sum())
  • 輸出:
       above_three  value
even                     
False          0.0      5
True           3.0     16
  • 按columns計算和
grouped_data = example_df.groupby('even')
# You can take one or more columns from the result DataFrame
print(grouped_data.sum()['value'])
print ('\n') # Blank line to separate results
print(grouped_data['value'].sum())
  • 以上兩個print計算結(jié)果一樣:
even
False     5
True     16
Name: value, dtype: int32
  1. group實(shí)現(xiàn)分組后的標(biāo)準(zhǔn)化和求第二大的值
import numpy as np
import pandas as pd

values = np.array([1, 3, 2, 4, 1, 6, 4])
example_df = pd.DataFrame({
    'value': values,
    'even': values % 2 == 0,
    'above_three': values > 3 
}, index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])

# Change False to True for each block of code to see what it does

# Standardize each group
if True:
    def standardize(xs):
        return (xs - xs.mean()) / xs.std()
    grouped_data = example_df.groupby('even')
    print(grouped_data.groups)
    print(grouped_data['value'].apply(standardize))
if True:
    def second_largest(xs):
        sorted_xs = xs.sort(inplace=False, ascending=False)
        return sorted_xs.iloc[1]
    grouped_data = example_df.groupby('even')
    print(grouped_data['value'].apply(second_largest))
  • 輸出:
# print按even分組
{False: ['a', 'b', 'e'], True: ['c', 'd', 'f', 'g']}
# print標(biāo)準(zhǔn)化
a   -0.577350
b    1.154701
c   -1.224745
d    0.000000
e   -0.577350
f    1.224745
g    0.000000
Name: value, dtype: float64
# print第二大值
even
False    1
True     4
Name: value, dtype: int64
  1. 每小時入站和出站數(shù)
ridership_df = pd.DataFrame({
    'UNIT': ['R051', 'R079', 'R051', 'R079', 'R051', 'R079', 'R051', 'R079', 'R051'],
    'TIMEn': ['00:00:00', '02:00:00', '04:00:00', '06:00:00', '08:00:00', '10:00:00', '12:00:00', '14:00:00', '16:00:00'],
    'ENTRIESn': [3144312, 8936644, 3144335, 8936658, 3144353, 8936687, 3144424, 8936819, 3144594],
    'EXITSn': [1088151, 13755385,  1088159, 13755393,  1088177, 13755598, 1088231, 13756191,  1088275]
})
def hours_for_group(entries_and_exits):
    return entries_and_exits-entries_and_exits.shift(1)
ridership_df.groupby('UNIT')[['ENTRIESn','EXITSn']].apply(hours_for_group)
  • 輸出結(jié)果:
    ENTRIESn EXITSn
0   NaN     NaN
1   NaN     NaN
2   23.0    8.0
3   14.0    8.0
4   18.0    18.0
5   29.0    205.0
6   71.0    54.0
7   132.0   593.0
8   170.0   44.0

9瘟仿、DataFrame合并

import pandas as pd

subway_df = pd.DataFrame({
    'UNIT': ['R003', 'R003', 'R003', 'R003', 'R003', 'R004', 'R004', 'R004',
             'R004', 'R004'],
    'DATEn': ['05-01-11', '05-02-11', '05-03-11', '05-04-11', '05-05-11',
              '05-01-11', '05-02-11', '05-03-11', '05-04-11', '05-05-11'],
    'hour': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'ENTRIESn': [ 4388333,  4388348,  4389885,  4391507,  4393043, 14656120,
                 14656174, 14660126, 14664247, 14668301],
    'EXITSn': [ 2911002,  2911036,  2912127,  2913223,  2914284, 14451774,
               14451851, 14454734, 14457780, 14460818],
    'latitude': [ 40.689945,  40.689945,  40.689945,  40.689945,  40.689945,
                  40.69132 ,  40.69132 ,  40.69132 ,  40.69132 ,  40.69132 ],
    'longitude': [-73.872564, -73.872564, -73.872564, -73.872564, -73.872564,
                  -73.867135, -73.867135, -73.867135, -73.867135, -73.867135]
})

weather_df = pd.DataFrame({
    'DATEn': ['05-01-11', '05-01-11', '05-02-11', '05-02-11', '05-03-11',
              '05-03-11', '05-04-11', '05-04-11', '05-05-11', '05-05-11'],
    'daten': ['05-01-11', '05-01-11', '05-02-11', '05-02-11', '05-03-11',
              '05-03-11', '05-04-11', '05-04-11', '05-05-11', '05-05-11'],
    'hour': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'latitude': [ 40.689945,  40.69132 ,  40.689945,  40.69132 ,  40.689945,
                  40.69132 ,  40.689945,  40.69132 ,  40.689945,  40.69132 ],
    'longitude': [-73.872564, -73.867135, -73.872564, -73.867135, -73.872564,
                  -73.867135, -73.872564, -73.867135, -73.872564, -73.867135],
    'pressurei': [ 30.24,  30.24,  30.32,  30.32,  30.14,  30.14,  29.98,  29.98,
                   30.01,  30.01],
    'fog': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'rain': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'tempi': [ 52. ,  52. ,  48.9,  48.9,  54. ,  54. ,  57.2,  57.2,  48.9,  48.9],
    'wspdi': [  8.1,   8.1,   6.9,   6.9,   3.5,   3.5,  15. ,  15. ,  15. ,  15. ]
})
subway_df.merge(weather_df,on =['DATEn','hour','latitude','longitude'],how = 'inner')
subway_df.merge(weather_df,left_on =['DATEn','hour','latitude','longitude'],right_on =['daten','hour','latitude','longitude'],how = 'inner')
  • 輸出結(jié)果:


    print1
print2
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末箱锐,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子猾骡,更是在濱河造成了極大的恐慌瑞躺,老刑警劉巖,帶你破解...
    沈念sama閱讀 218,941評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件兴想,死亡現(xiàn)場離奇詭異幢哨,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)嫂便,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,397評論 3 395
  • 文/潘曉璐 我一進(jìn)店門捞镰,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人毙替,你說我怎么就攤上這事岸售。” “怎么了厂画?”我有些...
    開封第一講書人閱讀 165,345評論 0 356
  • 文/不壞的土叔 我叫張陵凸丸,是天一觀的道長。 經(jīng)常有香客問我袱院,道長屎慢,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,851評論 1 295
  • 正文 為了忘掉前任忽洛,我火速辦了婚禮腻惠,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘欲虚。我一直安慰自己集灌,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,868評論 6 392
  • 文/花漫 我一把揭開白布复哆。 她就那樣靜靜地躺著欣喧,像睡著了一般。 火紅的嫁衣襯著肌膚如雪寂恬。 梳的紋絲不亂的頭發(fā)上续誉,一...
    開封第一講書人閱讀 51,688評論 1 305
  • 那天,我揣著相機(jī)與錄音初肉,去河邊找鬼酷鸦。 笑死,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的臼隔。 我是一名探鬼主播嘹裂,決...
    沈念sama閱讀 40,414評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼摔握!你這毒婦竟也來了寄狼?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,319評論 0 276
  • 序言:老撾萬榮一對情侶失蹤氨淌,失蹤者是張志新(化名)和其女友劉穎泊愧,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體盛正,經(jīng)...
    沈念sama閱讀 45,775評論 1 315
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡删咱,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,945評論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了豪筝。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片痰滋。...
    茶點(diǎn)故事閱讀 40,096評論 1 350
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖续崖,靈堂內(nèi)的尸體忽然破棺而出敲街,到底是詐尸還是另有隱情,我是刑警寧澤严望,帶...
    沈念sama閱讀 35,789評論 5 346
  • 正文 年R本政府宣布多艇,位于F島的核電站,受9級特大地震影響像吻,放射性物質(zhì)發(fā)生泄漏墩蔓。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,437評論 3 331
  • 文/蒙蒙 一萧豆、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧昏名,春花似錦涮雷、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,993評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至仑扑,卻和暖如春览爵,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背镇饮。 一陣腳步聲響...
    開封第一講書人閱讀 33,107評論 1 271
  • 我被黑心中介騙來泰國打工蜓竹, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 48,308評論 3 372
  • 正文 我出身青樓俱济,卻偏偏與公主長得像嘶是,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子蛛碌,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,037評論 2 355

推薦閱讀更多精彩內(nèi)容