蛋白質結構預測與分析常用網(wǎng)址(上)

一、蛋白質結構分類數(shù)據(jù)庫:

SCOP2 is a successor of Structural classification of proteins(SCOP)? ??

【http://scop2.mrc-lmb.cam.ac.uk/】

CATH is a classification of protein structures downloaded from the Protein Data Bank

【http://www.cathdb.info/】


二、常用的蛋白質結構比對方法

1.?策略:CE

策略要點:分子內距離比較方法,采用最優(yōu)路徑擴張的策略

【http://cl.sdsc.edu/jfatcatserver/】


2. 策略:TM-align

策略要點:類似于分子內距離比較方法動態(tài)規(guī)劃

【http://zhanglab.ccmb.med.umich.edu/TM-align/】

簡介:TM-align is an algorithm for sequence-order independent protein structure comparisons. For two protein structures of unknown equivalence, TM-align first generates optimized residue-to-residue alignment based on structural similarity using dynamic programming iterations. An optimal superposition of the two structures, as well as the?TM-score?value which scales the structural similarity, will be returned. TM-score has the value in (0,1], where 1 indicates a perfect match between two structures. Following strict statistics of structures in the PDB, scores below 0.2 corresponds to randomly chosen unrelated proteins whereas with a score higher than 0.5 assume generally the same fold in SCOP/CATH.

3. 策略:DAL1

策略要點:分子內距離比較方法

【http://www.ebi.ac.uk/Tools/structure/dalilite/】

簡介:DaliLite computes optimal and suboptimal structural alignments between two protein structures. It will compare all chains in the first structure against all chains in the second (unless specific chain IDs are given). The resulting superimposed coordinate files can be downloaded or viewed interactively in Jmol.

4. 策略:K2

策略要點:遺傳算法

【http://zlab.bu.edu/k2sa/index.shtml】

簡介:K2SA?is a protein structure alignment program based on?K2. K2SA uses the same basic strategy as K2 but is about 100 times faster. This speed up is the result of

1)?A fast simulated annealing technique that replaces the genetic algorithm.

2)?Tighter code.

5. 策略:SHEBA

策略要點:分層次比對

【https://ccrod.cancer.gov/confluence/display/CCRLEE/SHEBA】

簡介:SHEBA is a new protein structure alignment procedure. The initial alignment is made by comparing a one-dimensional (1D) list of primary, secondary and tertiary structural profiles of two proteins, without explicitly considering the geometry of the structures. The alignment is then iteratively refined in the second step, in which new alignments are found by three-dimensional (3D) superposition of the structures based on the current alignment.

SHEBA can do pair-wise (one-to-one) alignment or multiple (one-to-many) alignment. It also has several different output options:

1) for pair-wise alignment: alignment statistics, corresponding sequence alignments, formatted column output, a list of aligned residue numbers, the transformation matrix, and the transformed coordinates in PDB-like format.

2) for multiple alignment: corresponding sequence alignments and multiple alignment statistics.

6. 策略:MultiProt

策略要點:多結構比對方法

【http://bioinfo3d.cs.tau.ac.il/MultiProt/】

簡介:MultiProt is a fully automated highly efficient technique which detects the multiple structural alignments of protein structures. It finds the common geometrical cores between the input molecules. Most of the existing methods require that all the input molecules be aligned, while MultiProt does not require that all the input molecules participate in the alignment. Actually, it efficiently detects high scoring partial multiple alignments for all possible number of molecules from the input.

The final structural alignment can either preserve the sequence order (like sequence alignment), or be sequence order independent.

7. 策略:SSM

策略要點:基于二級結構單元匹配

【http://www.ebi.ac.uk/msd-srv/ssm/】

簡介:

PDBeFold functionality:

1) pairwise comparison and 3D alignment of protein structures

2) multiple comparison and 3D alignment of protein structures

3) examination of a protein structure for similarity with the whole?PDB archive?or?SCOP?archive

4) best Cα-alignment of compared structures

5) download and visualisation of best-superposed structures using?Rasmol?(Unix/Linux platforms),Rastop?(Windows machines) and?Jmol?(platform-independent server-side java viewer)

6) linking the results to other services -PDBeMotif,SCOP,GeneCensus,FSSP,CATH,PDBSum,UniProt

8. 策略:STRUCTURAL

策略要點:基于雙動態(tài)規(guī)劃

【http://molmovdb.mbb.yale.edu/align/】

簡介:Structural Alignment Server

9. 策略:VAST

策略要點:基于圖論的方法

【http://www.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html】

簡介:Vector Alignment Search Tool

VAST, short for?Vector?Alignment?Search?Tool, is a computer algorithm developed at NCBI and used to identify similar protein 3-dimensional structures ("similar structures") by?purely geometric criteria, and to identify distant homologs that cannot be recognized by sequence comparison.

10. 策略:SuperPose

策略要點:基于四元數(shù)特征值算法比對

【http://wishart.biology.ualberta.ca/SuperPose/】

簡介:SuperPose is a protein superposition server. SuperPose calculates protein superpositions using a modified quaternion approach. From a superposition of two or more structures, SuperPose generates sequence alignments, structure alignments, PDB coordinates, RMSD statistics, Difference Distance Plots, and interactive images of the superimposed structures.? The SuperPose web server supports the submission of either PDB-formatted files or PDB accession numbers.


聲明:本文是整合前人的智慧,歡迎補充討論战虏!

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子凑保,更是在濱河造成了極大的恐慌,老刑警劉巖涌攻,帶你破解...
    沈念sama閱讀 219,188評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件欧引,死亡現(xiàn)場離奇詭異,居然都是意外死亡恳谎,警方通過查閱死者的電腦和手機芝此,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,464評論 3 395
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來因痛,“玉大人婚苹,你說我怎么就攤上這事⊥腋啵” “怎么了膊升?”我有些...
    開封第一講書人閱讀 165,562評論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長谭企。 經常有香客問我廓译,道長,這世上最難降的妖魔是什么债查? 我笑而不...
    開封第一講書人閱讀 58,893評論 1 295
  • 正文 為了忘掉前任非区,我火速辦了婚禮,結果婚禮上攀操,老公的妹妹穿的比我還像新娘院仿。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 67,917評論 6 392
  • 文/花漫 我一把揭開白布歹垫。 她就那樣靜靜地躺著剥汤,像睡著了一般。 火紅的嫁衣襯著肌膚如雪排惨。 梳的紋絲不亂的頭發(fā)上吭敢,一...
    開封第一講書人閱讀 51,708評論 1 305
  • 那天,我揣著相機與錄音暮芭,去河邊找鬼鹿驼。 笑死,一個胖子當著我的面吹牛辕宏,可吹牛的內容都是我干的畜晰。 我是一名探鬼主播,決...
    沈念sama閱讀 40,430評論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼瑞筐,長吁一口氣:“原來是場噩夢啊……” “哼凄鼻!你這毒婦竟也來了?” 一聲冷哼從身側響起聚假,我...
    開封第一講書人閱讀 39,342評論 0 276
  • 序言:老撾萬榮一對情侶失蹤块蚌,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后膘格,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體峭范,經...
    沈念sama閱讀 45,801評論 1 317
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 37,976評論 3 337
  • 正文 我和宋清朗相戀三年瘪贱,在試婚紗的時候發(fā)現(xiàn)自己被綠了纱控。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 40,115評論 1 351
  • 序言:一個原本活蹦亂跳的男人離奇死亡政敢,死狀恐怖其徙,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情喷户,我是刑警寧澤,帶...
    沈念sama閱讀 35,804評論 5 346
  • 正文 年R本政府宣布访锻,位于F島的核電站褪尝,受9級特大地震影響,放射性物質發(fā)生泄漏期犬。R本人自食惡果不足惜河哑,卻給世界環(huán)境...
    茶點故事閱讀 41,458評論 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望龟虎。 院中可真熱鬧璃谨,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,008評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至底扳,卻和暖如春铸抑,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背衷模。 一陣腳步聲響...
    開封第一講書人閱讀 33,135評論 1 272
  • 我被黑心中介騙來泰國打工鹊汛, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人阱冶。 一個月前我還...
    沈念sama閱讀 48,365評論 3 373
  • 正文 我出身青樓刁憋,卻偏偏與公主長得像,于是被迫代替她去往敵國和親木蹬。 傳聞我的和親對象是個殘疾皇子至耻,可洞房花燭夜當晚...
    茶點故事閱讀 45,055評論 2 355

推薦閱讀更多精彩內容