研究 Spark 內(nèi)部是怎么運(yùn)行的,怎么將 Spark 的任務(wù)從開始運(yùn)行到結(jié)束的踪古,先從 spark-submit 這個 shell 腳本提交用戶程序開始券腔。下面的分析都是基于 spark 2.1.1 版本。
我們一般提交 Spark 任務(wù)時纷纫,都會寫一個如下的腳本,里面指定 spark-submit 腳本的位置辱魁,配置好一些參數(shù),然后運(yùn)行:
./bin/spark-submit \
--class <main-class> \
--master <master-url> \
--deploy-mode <deploy-mode> \
--conf <key>=<value> \
... # other options
<application-jar> \
[application-arguments]
上面那個腳本實(shí)際上會將參數(shù)帶到 spark-submit 腳本中去執(zhí)行参滴,看一下 spark-submit 腳本:
if [ -z "${SPARK_HOME}" ]; then
source "$(dirname "$0")"/find-spark-home
fi # disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0
exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
腳本最后調(diào)用 exec 執(zhí)行 "@" 是腳本執(zhí)行的所有參數(shù)过蹂。
通過 spark-class 腳本,最終執(zhí)行的命令中酷勺,制定了程序的入口為org.apache.spark.deploy.SparkSubmit
。
一脆诉,org.apache.spark.deploy.SparkSubmit
1,main 方法
def main(args: Array[String]): Unit = {
val appArgs = new SparkSubmitArguments(args)
if (appArgs.verbose) {
// scalastyle:off println
printStream.println(appArgs)
// scalastyle:on println
}
appArgs.action match {
case SparkSubmitAction.SUBMIT => submit(appArgs)
case SparkSubmitAction.KILL => kill(appArgs)
case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
}
}
從 main 方法中可以看出亏狰,根據(jù)解析后的參數(shù)中的 action 進(jìn)行模式匹配偶摔,是什么操作就執(zhí)行什么方法,我們這邊是 submit 操作辰斋,則調(diào)用 submit 方法。
2够挂,submit 方法
submit 方法做兩件事情藕夫,第一件事為通過 clusterManager 和 dploymode 去決定下一步要執(zhí)行的類的 main 方法,第二件事是根據(jù)反射執(zhí)行這個 main 方法毅贮。
2.1,submit 方法第一步
這部分主要是準(zhǔn)備下一步要執(zhí)行的相關(guān)類及參數(shù):
private def submit(args: SparkSubmitArguments): Unit = {
val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args)
2.1.1病蛉,prepareSubmitEnvironment 方法
通過調(diào)用 prepareSubmitEnvironment
方法來準(zhǔn)備下一步要執(zhí)行的類的 main 方法及相關(guān)參數(shù),看一下這個方法铡恕,下面這部分是根據(jù)參數(shù)中的 master 和 deploy-mode 來設(shè)置對應(yīng)的 cluasterManager 和部署模式:
private[deploy] def prepareSubmitEnvironment(args: SparkSubmitArguments)
: (Seq[String], Seq[String], Map[String, String], String) = {
// 要返回的四個參數(shù)
val childArgs = new ArrayBuffer[String]()
val childClasspath = new ArrayBuffer[String]()
val sysProps = new HashMap[String, String]()
var childMainClass = ""
// 根據(jù)腳本中配置的 master 參數(shù)去模式匹配出 clusterManager
val clusterManager: Int = args.master match {
case "yarn" => YARN
case "yarn-client" | "yarn-cluster" =>
printWarning(s"Master ${args.master} is deprecated since 2.0." +
" Please use master \"yarn\" with specified deploy mode instead.")
YARN
case m if m.startsWith("spark") => STANDALONE
case m if m.startsWith("mesos") => MESOS
case m if m.startsWith("local") => LOCAL
case _ =>
printErrorAndExit("Master must either be yarn or start with spark, mesos, local")
-1
}
// 根據(jù) deployMode 參數(shù)去模式匹配出部署模式
var deployMode: Int = args.deployMode match {
case "client" | null => CLIENT
case "cluster" => CLUSTER
case _ => printErrorAndExit("Deploy mode must be either client or cluster"); -1
}
然后會根據(jù)上面匹配出的集群以及部署模式?jīng)Q定怎么提交 application探熔,我們這邊看一下 standalone 集群部署模式,看下面這部分代碼:
// standalone cluster 模式下的 childMainClass 以及參數(shù)的配置
if (args.isStandaloneCluster) {
//如果參數(shù)中配置了 useRest 則為 RestSubmissionClient 的方式去提交 application
if (args.useRest) {
childMainClass = "org.apache.spark.deploy.rest.RestSubmissionClient"
childArgs += (args.primaryResource, args.mainClass)
} else {
// 否則使用 Client 放是去提交 application
childMainClass = "org.apache.spark.deploy.Client"
if (args.supervise) { childArgs += "--supervise" }
Option(args.driverMemory).foreach { m => childArgs += ("--memory", m) }
Option(args.driverCores).foreach { c => childArgs += ("--cores", c) }
childArgs += "launch"
childArgs += (args.master, args.primaryResource, args.mainClass)
}
if (args.childArgs != null) {
childArgs ++= args.childArgs
}
}
在 standalone 集群模式下诀艰,有兩個提交網(wǎng)關(guān):
1,使用 org.apache.spark.deploy.Client
作為包裝器來使用傳統(tǒng)的 RPC 網(wǎng)關(guān)苛蒲;
2绿满,使用 Spark 1.3 中引入的基于 rest 的網(wǎng)關(guān)。
2.2喇颁,submit 方法第二步
這里我們的參數(shù)已經(jīng)準(zhǔn)備好了,然后根據(jù)我們 standalone cluster 部署模式?jīng)Q定下一步怎么執(zhí)行:
/* 在standalone集群模式下橘霎,有兩個提交網(wǎng)關(guān):
* 1.使用org.apache.spark.deploy.Client作為包裝器來使用傳統(tǒng)的RPC網(wǎng)關(guān)
* 2.Spark 1.3中引入的基于rest的網(wǎng)關(guān)
* 第二種方法是Spark 1.3的默認(rèn)行為,但是Spark submit將會失敗
* 如果master不是一個REST服務(wù)器瓦盛,那么它將無法使用REST網(wǎng)關(guān)外潜。
*/
if (args.isStandaloneCluster && args.useRest) {
try {
// scalastyle:off println
printStream.println("Running Spark using the REST application submission protocol.")
// scalastyle:on println
doRunMain()
} catch {
// Fail over to use the legacy submission gateway
case e: SubmitRestConnectionException =>
printWarning(s"Master endpoint ${args.master} was not a REST server. " +
"Falling back to legacy submission gateway instead.")
args.useRest = false
submit(args)
}
} else {
// 其他模式,直接調(diào)用doRunMain方法
doRunMain()
}
接著會調(diào)用到 doRunMain 方法橡卤,內(nèi)部其實(shí)調(diào)用了 runMain 方法损搬,所以我們直接看 runMain 方法。
2.2.1嵌灰,runMain 方法
//實(shí)際上這個方法就是根據(jù)我們上面 prepareSubmitEnvironment 方法準(zhǔn)備好的參數(shù),通過反射的方法去執(zhí)行我們
//下一步要執(zhí)行的類及方法
private def runMain(
childArgs: Seq[String],
childClasspath: Seq[String],
sysProps: Map[String, String],
childMainClass: String,
verbose: Boolean): Unit = {
// scalastyle:off println
if (verbose) {
printStream.println(s"Main class:\n$childMainClass")
printStream.println(s"Arguments:\n${childArgs.mkString("\n")}")
printStream.println(s"System properties:\n${sysProps.mkString("\n")}")
printStream.println(s"Classpath elements:\n${childClasspath.mkString("\n")}")
printStream.println("\n")
}
// scalastyle:on println
val loader =
if (sysProps.getOrElse("spark.driver.userClassPathFirst", "false").toBoolean) {
new ChildFirstURLClassLoader(new Array[URL](0),
Thread.currentThread.getContextClassLoader)
} else {
new MutableURLClassLoader(new Array[URL](0),
Thread.currentThread.getContextClassLoader)
}
Thread.currentThread.setContextClassLoader(loader)
for (jar <- childClasspath) {
addJarToClasspath(jar, loader)
}
for ((key, value) <- sysProps) {
System.setProperty(key, value)
}
var mainClass: Class[_] = null
try {
mainClass = Utils.classForName(childMainClass)
} catch {
case e: ClassNotFoundException =>
e.printStackTrace(printStream)
if (childMainClass.contains("thriftserver")) {
// scalastyle:off println
printStream.println(s"Failed to load main class $childMainClass.")
printStream.println("You need to build Spark with -Phive and -Phive-thriftserver.")
// scalastyle:on println
}
System.exit(CLASS_NOT_FOUND_EXIT_STATUS)
case e: NoClassDefFoundError =>
e.printStackTrace(printStream)
if (e.getMessage.contains("org/apache/hadoop/hive")) {
// scalastyle:off println
printStream.println(s"Failed to load hive class.")
printStream.println("You need to build Spark with -Phive and -Phive-thriftserver.")
// scalastyle:on println
}
System.exit(CLASS_NOT_FOUND_EXIT_STATUS)
}
// SPARK-4170
if (classOf[scala.App].isAssignableFrom(mainClass)) {
printWarning("Subclasses of scala.App may not work correctly. Use a main() method instead.")
}
val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass)
if (!Modifier.isStatic(mainMethod.getModifiers)) {
throw new IllegalStateException("The main method in the given main class must be static")
}
@tailrec
def findCause(t: Throwable): Throwable = t match {
case e: UndeclaredThrowableException =>
if (e.getCause() != null) findCause(e.getCause()) else e
case e: InvocationTargetException =>
if (e.getCause() != null) findCause(e.getCause()) else e
case e: Throwable =>
e
}
try {
//通過反射去執(zhí)行準(zhǔn)備好的 mainClass 的 main 方法
mainMethod.invoke(null, childArgs.toArray)
} catch {
case t: Throwable =>
findCause(t) match {
case SparkUserAppException(exitCode) =>
System.exit(exitCode)
case t: Throwable =>
throw t
}
}
}
我們選取的 standalone cluster 模式去分析的,根據(jù)上面的 prepareSubmitEnvironment 方法可以知道我們要使用 org.apache.spark.deploy.Client
這個 childMainClass驹溃,然后根據(jù)上面的代碼知道延曙,我們下一步是將相關(guān)參數(shù)帶進(jìn) org.apache.spark.deploy.Client
這個類的 main 方法中去執(zhí)行。
所以下面開始看 org.apache.spark.deploy.Client
二枝缔,org.apache.spark.deploy.Client
Client 用于啟動和終止 standalone 集群中的 Driver 程序。
1,main 方法
def main(args: Array[String]) {
// scalastyle:off println
if (!sys.props.contains("SPARK_SUBMIT")) {
println("WARNING: This client is deprecated and will be removed in a future version of Spark")
println("Use ./bin/spark-submit with \"--master spark://host:port\"")
}
// scalastyle:on println
val conf = new SparkConf()
val driverArgs = new ClientArguments(args)
if (!conf.contains("spark.rpc.askTimeout")) {
conf.set("spark.rpc.askTimeout", "10s")
}
Logger.getRootLogger.setLevel(driverArgs.logLevel)
//創(chuàng)建 rpcEnv
val rpcEnv =
RpcEnv.create("driverClient", Utils.localHostName(), 0, conf, new SecurityManager(conf))
//獲取 master 節(jié)點(diǎn)的 RpcEndPoint 的引用截型,用于和 master 進(jìn)行 Rpc 通信
val masterEndpoints = driverArgs.masters.map(RpcAddress.fromSparkURL).
map(rpcEnv.setupEndpointRef(_, Master.ENDPOINT_NAME))
//注冊 rpcEndpoint儒溉,調(diào)用 onStart方法
rpcEnv.setupEndpoint("client", new ClientEndpoint(rpcEnv, driverArgs, masterEndpoints, conf))
//
rpcEnv.awaitTermination()
}
這里開始創(chuàng)建 rpcEnv 了,關(guān)于 Rpc 這塊的知識點(diǎn)顿涣,可以看前面這篇文章了解一下:Spark 中的 RPC,拿到 master 的 rpcEndpoint 的引用去注冊 rpcEndpoint舔痪,這里會去調(diào)用 ClientEndpoint 的 onstart 方法。
三锄码,org.apache.spark.deploy.ClientEndpoint
ClientEndPoint 是一個 ThreadSafeRpcEndpoint晌涕,下面看下它的 onStart 方法。
1余黎,onStart 方法
override def onStart(): Unit = {
driverArgs.cmd match {
case "launch" =>
// TODO: We could add an env variable here and intercept it in `sc.addJar` that would
// truncate filesystem paths similar to what YARN does. For now, we just require
// people call `addJar` assuming the jar is in the same directory.
val mainClass = "org.apache.spark.deploy.worker.DriverWrapper"
val classPathConf = "spark.driver.extraClassPath"
val classPathEntries = sys.props.get(classPathConf).toSeq.flatMap { cp =>
cp.split(java.io.File.pathSeparator)
}
val libraryPathConf = "spark.driver.extraLibraryPath"
val libraryPathEntries = sys.props.get(libraryPathConf).toSeq.flatMap { cp =>
cp.split(java.io.File.pathSeparator)
}
val extraJavaOptsConf = "spark.driver.extraJavaOptions"
val extraJavaOpts = sys.props.get(extraJavaOptsConf)
.map(Utils.splitCommandString).getOrElse(Seq.empty)
val sparkJavaOpts = Utils.sparkJavaOpts(conf)
val javaOpts = sparkJavaOpts ++ extraJavaOpts
// 將classPathEntries,libraryPathEntries,javaOpts,drvierArgs信息封裝成Command
// 這里的mainClass為org.apache.spark.deploy.worker.DriverWrapper
val command = new Command(mainClass,
Seq("{{WORKER_URL}}", "{{USER_JAR}}", driverArgs.mainClass) ++ driverArgs.driverOptions,
sys.env, classPathEntries, libraryPathEntries, javaOpts)
// 將drvierArgs惧财,command信息封裝成DriverDescription
val driverDescription = new DriverDescription(
driverArgs.jarUrl,
driverArgs.memory,
driverArgs.cores,
driverArgs.supervise,
command)
// 向master發(fā)送RequestSubmitDriver,注冊Driver
ayncSendToMasterAndForwardReply[SubmitDriverResponse](
RequestSubmitDriver(driverDescription))
case "kill" =>
val driverId = driverArgs.driverId
ayncSendToMasterAndForwardReply[KillDriverResponse](RequestKillDriver(driverId))
}
}
這里也會根據(jù) cmd 進(jìn)行模式匹配,垮衷,如果命令為 launch,就去獲取 driver 的額外的 java 依賴搀突,classpath,java 配置甸昏。然后將這些信息封裝為一個 Command 對象,再降 driver 的參數(shù)和 command 信息一起封裝成 DriverDescription 對象施蜜,調(diào)用 ayncSendToMasterAndForwardReply 發(fā)送信息绊寻。
2花墩,ayncSendToMasterAndForwardReply 方法
private def ayncSendToMasterAndForwardReply[T: ClassTag](message: Any): Unit = {
for (masterEndpoint <- masterEndpoints) {
masterEndpoint.ask[T](message).onComplete {
case Success(v) => self.send(v)
case Failure(e) =>
logWarning(s"Error sending messages to master $masterEndpoint", e)
}(forwardMessageExecutionContext)
}
}
這個方法實(shí)際上就是將信息發(fā)送到 masterEndpoint 上去。
四和泌,總結(jié)
至此祠肥,我們整個 spark-submit 任務(wù)提交就完成了,接下來就是等待 master 返回 driver 的注冊結(jié)果仇箱,啟動 driver。
最后可以看一下 spark-submit 過程的流程圖: