原題
給定一個(gè)表達(dá)式字符串?dāng)?shù)組,返回該表達(dá)式的逆波蘭表達(dá)式(即去掉括號(hào))卤唉。
對(duì)于 [3 - 4 + 5]的表達(dá)式(該表達(dá)式可表示為["3", "-", "4", "+", "5"])涩惑,返回 [3 4 - 5 +](該表達(dá)式可表示為 ["3", "4", "-", "5", "+"])。
解題思路
- 首先建立表達(dá)式樹桑驱,如題[Expression Tree Build]
- Reverse Polish Notation即表達(dá)式樹后序遍歷的結(jié)果
完整代碼
class expressionTreeNode:
def __init__(self, symbol):
self.symbol = symbol
self.left, self.right = None, None
class MyNode:
def __init__(self, val, s):
self.left = None
self.right = None
self.val = val
self.exp_node = expressionTreeNode(s)
class Solution:
# @param expression: A string list
# @return: The Reverse Polish notation of this expression
def get_val(self, a, base):
if a == '+' or a == '-':
return 1 + base
if a == '*' or a == '/':
return 2 + base
return sys.maxint
def create_tree(self, expression):
stack = []
base = 0
for i in range(len(expression)):
if expression[i] == '(':
if base != sys.maxint:
base += 10
continue
elif expression[i] == ')':
if base != sys.maxint:
base -= 10
continue
val = self.get_val(expression[i], base)
node = MyNode(val, expression[i])
while stack and val <= stack[-1].val:
node.left = stack.pop()
if stack:
stack[-1].right = node
stack.append(node)
if not stack:
return None
return stack[0]
def copy_tree(self, root):
if not root:
return None
root.exp_node.left = self.copy_tree(root.left)
root.exp_node.right = self.copy_tree(root.right)
return root.exp_node
def build(self, expression):
root = self.create_tree(expression)
return self.copy_tree(root)
def dfs(self, root, list):
if root == None:
return
if root.left:
self.dfs(root.left, list)
if root.right:
self.dfs(root.right, list)
list.append(root.symbol)
def convertToRPN(self, expression):
res = []
root = self.build(expression)
self.dfs(root, res)
return res