文章目錄
- 1.Recap拆解
- 2.BRICS拆解
- 3.BRICS合成
Recap和BRICS對(duì)分子拆解與合成
1.Recap拆解
另一個(gè)與化學(xué)反應(yīng)相關(guān)的功能是Recap劫拗,Recap可以模仿實(shí)驗(yàn)室中的正向合成過程來進(jìn)行逆向操作苟翻,對(duì)分子進(jìn)行一系列的轉(zhuǎn)換與分解,最終得到一組合理的分子片段退个。Recap可以對(duì)拆解過程進(jìn)行追蹤杰妓,并形成類似樹的數(shù)據(jù)結(jié)構(gòu)街氢。原始分子記為根節(jié)點(diǎn)(root)摆昧,被拆解的分子記為父節(jié)點(diǎn)(parent)诚卸,拆解得到的分子記為子節(jié)點(diǎn)(children)界酒,某節(jié)點(diǎn)下的所有分支節(jié)點(diǎn)為子孫節(jié)點(diǎn)(all children)纠屋,某節(jié)點(diǎn)上的所有父節(jié)點(diǎn)為祖先節(jié)點(diǎn)(ultimate parents),無法繼續(xù)拆解分子記為葉子節(jié)點(diǎn)(leaves)盾计。所有英文翻譯對(duì)應(yīng)recap中的屬性或方法名。
- Recap算法拆解分子:Recap.RecapDecompose(mol)
>>> from rdkit.Chem import Recap
>>> from rdkit import Chem
>>> from rdkit.Chem import AllChem as Chem
>>> m = Chem.MolFromSmiles('c1ccccc1OCCOC(=O)CC')
>>> hierarch = Recap.RecapDecompose(m)
可以從節(jié)點(diǎn)對(duì)象通過函數(shù)獲取其葉子節(jié)點(diǎn)赁遗、子孫節(jié)點(diǎn)署辉,得到的都是字典,鍵為節(jié)點(diǎn)的smiles岩四,值為節(jié)點(diǎn)對(duì)象哭尝。
- 葉子節(jié)點(diǎn)函數(shù):hierarch.GetLeaves()
- 子孫節(jié)點(diǎn)函數(shù):hierarch.GetAllChildren()
- 祖先節(jié)點(diǎn)函數(shù),返回列表:getUltimateParents()
>>> print(hierarch.GetLeaves().keys())
dict_keys(['*C(=O)CC', '*CCO*', '*c1ccccc1', '*CCOc1ccccc1'])
>>> print(hierarch.GetAllChildren().keys())
dict_keys(['*C(=O)CC', '*OCCOc1ccccc1', '*CCO*', '*c1ccccc1', '*CCOC(=O)CC', '*CCOc1ccccc1'])
>>> print(hierarch.getUltimateParents()[0].smiles)
'CCC(=O)OCCOc1ccccc1'
還可以查看節(jié)點(diǎn)的如下屬性:
- smiles:smiles(字符串)
- 子節(jié)點(diǎn):children(字典)
- 父節(jié)點(diǎn):parents(字典)
>>> child = hierarch.children['*OCCOc1ccccc1']
>>> print(child.smiles)
'*OCCOc1ccccc1'
>>> print(child.children.keys())
dict_keys(['*CCO*', '*c1ccccc1'])
>>> print(child.parents.keys())
dict_keys(['CCC(=O)OCCOc1ccccc1'])
- 查看葉子節(jié)點(diǎn)的分子
leaves = list(hierarch.GetLeaves().values())
Chem.Draw.MolsToGridImage([x.mol for x in leaves], molsPerRow=4, subImgSize=(200, 200))
2.BRICS拆解
Rdkit中還有一種BRICS算法剖煌,同樣可以用于拆解分子材鹦。與recap不同,該算法是根據(jù)鍵是否能夠合成來進(jìn)行拆解耕姊。該方法返回一個(gè)經(jīng)過去重的列表桶唐,在原子上的序號(hào)對(duì)應(yīng)一種特定的反應(yīng)類型。
- BRICS算法拆解分子:BRICS.BRICSDecompose(m)
>>> from rdkit.Chem import BRICS
>>> m = Chem.MolFromSmiles('c1ccccc1OCCOC(=O)CC')
>>> BRICS.BRICSDecompose(m)
{'[1*]C(=O)CC', '[16*]c1ccccc1', '[3*]O[3*]', '[4*]CC[4*]'}
- 對(duì)一組分子生成片段
>>> import os
>>> from rdkit.Chem import RDConfig
>>> cdk_file = os.path.join(RDConfig.RDDocsDir, 'Book\data\cdk2.sdf')
>>> cdk2mols = Chem.SDMolSupplier(cdk_file)
>>> allfrags = set()
>>> for m in cdk2mols:
>>> pieces = BRICS.BRICSDecompose(m)
>>> allfrags.update(pieces)
>>> print(len(allfrags))
90
>>> print(sorted(allfrags)[:3])
['NS(=O)(=O)c1ccc(N/N=C2\\C(=O)Nc3ccc(Br)cc32)cc1', '[1*]C(=O)C(C)C', '[1*]C(=O)NN(C)C']
3.BRICS合成
- BRICS模塊除了支持拆解分子茉兰,也可以對(duì)一組片段進(jìn)行合成:BRICS.BRICSBuild()
- 返回一個(gè)生成器尤泽,可以通過next()來獲取元素
- 生成的分子也是未經(jīng)過核對(duì)的,可以更新一下化合價(jià):UpdatePropertyCache()
>>> fragms = [Chem.MolFromSmiles(x) for x in sorted(allfrags)]
>>> ms = BRICS.BRICSBuild(fragms)
>>> prods = [next(ms) for x in range(4)]
>>> [prod.UpdatePropertyCache(strict=False) for prod in prods]
>>> Chem.Draw.MolsToGridImage(prods, molsPerRow=4, subImgSize=(200, 200))
可以通過設(shè)置隨機(jī)種子或設(shè)置scrambleReagents參數(shù)來保證可重復(fù)性
- 在BRICSBuild執(zhí)行前設(shè)置隨機(jī)種子
>>> import random
>>> random.seed(100)
>>> fragms = [Chem.MolFromSmiles(x) for x in sorted(allfrags)]
>>> ms = BRICS.BRICSBuild(fragms)
>>> prods = [next(ms) for x in range(4)]
>>> [prod.UpdatePropertyCache(strict=False) for prod in prods]
>>> Chem.Draw.MolsToGridImage(prods, molsPerRow=4, subImgSize=(200, 200))
- 設(shè)置scrambleReagents參數(shù)
>>> fragms = [Chem.MolFromSmiles(x) for x in sorted(allfrags)]
>>> ms = BRICS.BRICSBuild(fragms, scrambleReagents=False)
>>> prods = [next(ms) for x in range(4)]
>>> [prod.UpdatePropertyCache(strict=False) for prod in prods]
>>> Chem.Draw.MolsToGridImage(prods, molsPerRow=4, subImgSize=(200, 200))