今天袒餐,我們將更深入地學習和實現(xiàn)8個頂級Python機器學習算法茶宵。
讓我們開始Python編程中的機器學習算法之旅撵幽。
8 Python機器學習算法 - 你必須學習
以下是Python機器學習的算法:
1遗菠。線性回歸
線性回歸是受監(jiān)督的Python機器學習算法之一,它可以觀察連續(xù)特征并預測結果血柳。根據(jù)它是在單個變量上還是在許多特征上運行,我們可以將其稱為簡單線性回歸或多元線性回歸生兆。
這是最受歡迎的Python ML算法之一难捌,經(jīng)常被低估。它為變量分配最佳權重以創(chuàng)建線ax + b來預測輸出鸦难。我們經(jīng)常使用線性回歸來估計實際值根吁,例如基于連續(xù)變量的房屋調用和房屋成本『媳危回歸線是擬合Y = a * X + b的最佳線婴栽,表示獨立變量和因變量之間的關系。
您是否了解Python機器學習環(huán)境設置辈末?
讓我們?yōu)樘悄虿?shù)據(jù)集繪制這個圖愚争。
>>>將matplotlib.pyplot導入為plt
>>>將numpy導入為np
>>>來自sklearn導入數(shù)據(jù)集,linear_model
>>>來自sklearn.metrics import mean_squared_error挤聘,r2_score
>>>糖尿病=數(shù)據(jù)集轰枝。load_diabetes?()
>>> diabetes_X = diabetes.data [ :,np.newaxis组去,2 ]
>>> diabetes_X_train = diabetes_X [ : - 30 ] #splitting數(shù)據(jù)到訓練和測試集
>>> diabetes_X_test = diabetes_X [ - 30 :]
>>> diabetes_y_train = diabetes.target [ : - 30 ] #splitting目標分為訓練和測試集
>>> diabetes_y_test = diabetes.target [ - 30 :]
>>> regr = linear_model鞍陨。LinearRegression?()#線性回歸對象
>>> regr。fit (diabetes_X_train从隆,diabetes_y_train )#Use training set訓練模型
LinearRegression(copy_X = True诚撵,fit_intercept = True,n_jobs = 1键闺,normalize = False)
>>> diabetes_y_pred = regr寿烟。預測(diabetes_X_test )#Make預測
>>> regr.coef_
陣列([941.43097333])
>>>?mean_squared_error?(diabetes_y_test,diabetes_y_pred )
3035.0601152912695
>>>?r2_score?(diabetes_y_test辛燥,diabetes_y_pred )#Variance得分
0.410920728135835
>>> plt筛武。散射(diabetes_X_test缝其,diabetes_y_test,color = 'lavender' )
>>> plt徘六。情節(jié)(diabetes_X_test内边,diabetes_y_pred,color = 'pink' 待锈,linewidth = 3 )
[]
>>> plt漠其。xticks?(())
([],)
>>> plt竿音。yticks?(())
([]辉懒,)
>>> plt。show?()
Python機器學習算法 - 線性回歸
2 Logistic回歸
Logistic回歸是一種受監(jiān)督的分類Python機器學習算法谍失,可用于估計離散值眶俩,如0/1,是/否和真/假快鱼。這是基于一組給定的自變量颠印。我們使用邏輯函數(shù)來預測事件的概率,這給出了0到1之間的輸出抹竹。
雖然它說'回歸'线罕,但這實際上是一種分類算法。Logistic回歸將數(shù)據(jù)擬合到logit函數(shù)中窃判,也稱為logit回歸钞楼。讓我們描繪一下。
>>>將numpy導入為np
>>>將matplotlib.pyplot導入為plt
>>>來自sklearn import linear_model
>>> XMIN袄琳,XMAX = - 7 询件,7 #TEST集; 高斯噪聲的直線
>>> n_samples = 77
>>> np.random。種子(0 )
>>> x = np.random唆樊。正常(size = n_samples )
>>> y = (x> 0 )宛琅。astype?(np.float )
>>> x [ x> 0 ] * = 3
>>> x + =。4 * np.random逗旁。正常(size = n_samples )
>>> x = x [ :嘿辟,np.newaxis ]
>>> clf = linear_model。LogisticRegression (C = 1e4 )#Classifier
>>> clf片效。適合(x红伦,y )
>>> plt。圖(1 淀衣,figsize = (3 昙读,4 ))
<圖大小與300x400 0 軸>
>>> plt。clf?()
>>> plt舌缤。散射(X箕戳。拆紗()中,Y国撵,顏色= '薰衣草' 陵吸,ZORDER = 17 )
>>> x_test = np。linspace (- 7 介牙,7 壮虫,277 )
>>> def?model?(x ):
返回1 / (1個+ NP。EXP?(-x ))
>>> loss =?model?(x_test * clf.coef_ + clf.intercept_ )环础。拉威爾()
>>> plt囚似。plot?(x_test,loss线得,color = 'pink' 饶唤,linewidth = 2.5 )
[]
>>> ols = linear_model。LinearRegression?()
>>> ols贯钩。適合(x募狂,y )
LinearRegression(copy_X = True,fit_intercept = True角雷,n_jobs = 1祸穷,normalize = False)
>>> plt。plot?(x_test勺三,ols.coef_ * x_test + ols.intercept_雷滚,linewidth = 1 )
[]
>>> plt。axhline?(吗坚。4 祈远,顏色= ” 0.4' )
>>> plt。ylabel?('y' )
文本(0,0.5商源, 'Y')
>>> plt绊含。xlabel?('x' )
文本(0.5,0, 'X')
>>> plt炊汹。xticks?(范圍(- 7 躬充,7 ))
>>> plt。yticks ([ 0 讨便,0.4 充甚,1 ] )
>>> plt。ylim (- 霸褒。25 伴找,1.25 )
(-0.25,1.25)
>>> plt。XLIM?(- 4 废菱,10 )
(-4,10)
>>> plt技矮。圖例(('Logistic回歸' 抖誉,'線性回歸' ),loc = '右下' 衰倦,fontsize = 'small' )
>>> plt袒炉。show?()
機器學習算法 - Logistic Regreesion
3。決策樹
決策樹屬于受監(jiān)督的Python機器學習學習樊零,并且用于分類和回歸 - 盡管主要用于分類我磁。此模型接受一個實例,遍歷樹驻襟,并將重要特征與確定的條件語句進行比較夺艰。是下降到左子分支還是右分支取決于結果。通常沉衣,更重要的功能更接近根郁副。
這種Python機器學習算法可以對分類和連續(xù)因變量起作用。在這里豌习,我們將人口分成兩個或更多個同類集霞势。讓我們看看這個算法 -
>>>來自sklearn.cross_validation import train_test_split
>>>來自sklearn.tree導入DecisionTreeClassifier
>>>來自sklearn.metrics import accuracy_score
>>>來自sklearn.metrics import classification_report
>>> def?importdata?():#Importing data
balance_data = PD。read_csv?( 'https://archive.ics.uci.edu/ml/machine-learning-' +
'databases / balance-scale / balance-scale.data' 斑鸦,
sep = '愕贡,' ,header = None )
print?(len?(balance_data ))
print?(balance_data.shape )
打印(balance_data巷屿。頭())
return balance_data
>>> def?splitdataset?(balance_data ):#?Splitting 數(shù)據(jù)
x = balance_data.values [ :固以,1 :5 ]
y = balance_data.values [ :,0 ]
x_train嘱巾,x_test憨琳,y_train,y_test =?train_test_split?(
x旬昭,y篙螟,test_size = 0.3 ,random_state = 100 )
返回x问拘,y遍略,x_train,x_test骤坐,y_train绪杏,y_test
>>> def?train_using_gini?(x_train,x_test纽绍,y_train ):#gining with giniIndex
clf_gini =?DecisionTreeClassifier?(criterion = “ gini ” 蕾久,
random_state = 100 ,max_depth = 3 拌夏,min_samples_leaf = 5 )
clf_gini僧著。適合(x_train履因,y_train )
返回clf_gini
>>> def?train_using_entropy?(x_train,x_test盹愚,y_train ):#Training with entropy
clf_entropy =?DecisionTreeClassifier?(
criterion = “entropy” 栅迄,random_state = 100 ,
max_depth = 3 杯拐,min_samples_leaf = 5 )
clf_entropy霞篡。適合(x_train世蔗,y_train )
返回clf_entropy
>>> def?預測(x_test端逼,clf_object ):#制作預測
y_pred = clf_object。預測(x_test )
print?(f “預測值:{y_pred}” )
返回y_pred
>>> def?cal_accuracy?(y_test污淋,y_pred ):#計算準確性
print?(confusion_matrix?(y_test顶滩,y_pred ))
打印(accuracy_score?(y_test,y_pred )* 100 )
print?(classification_report?(y_test寸爆,y_pred ))
>>> data =?importdata?()
625
(625,5)
0 1 2 3 4
0 B 1 1 1 1
1 R 1 1 1 2
2 R 1 1 1 3
3 R 1 1 1 4
4 R 1 1 1 5
>>> x礁鲁,y,x_train赁豆,x_test仅醇,y_train,y_test =?splitdataset?(data )
>>> clf_gini =?train_using_gini?(x_train魔种,x_test析二,y_train )
>>> clf_entropy =?train_using_entropy?(x_train,x_test节预,y_train )
>>> y_pred_gini =?預測(x_test叶摄,clf_gini )
Python機器學習算法 - 決策樹
>>>?cal_accuracy?(y_test,y_pred_gini )
[[0 6 7]
[0 67 18]
[0 19 71]]
73.40425531914893
Python機器學習算法 - 決策樹
>>> y_pred_entropy =?預測(x_test安拟,clf_entropy )
Python機器學習算法 - 決策樹
>>>?cal_accuracy?(y_test蛤吓,y_pred_entropy )
[[0 6 7]
[0 63 22]
[0 20 70]]
70.74468085106383
Python機器學習算法 - 決策樹
4。支持向量機(SVM)
SVM是一種受監(jiān)督的分類Python機器學習算法糠赦,它繪制了一條劃分不同類別數(shù)據(jù)的線会傲。在這個ML算法中,我們計算向量以優(yōu)化線拙泽。這是為了確保每組中最近的點彼此相距最遠唆铐。雖然你幾乎總會發(fā)現(xiàn)這是一個線性向量,但它可能不是那樣的奔滑。
在這個Python機器學習教程中艾岂,我們將每個數(shù)據(jù)項繪制為n維空間中的一個點。我們有n個特征朋其,每個特征都具有某個坐標的值王浴。
首先脆炎,讓我們繪制一個數(shù)據(jù)集。
>>>來自sklearn.datasets.samples_generator import make_blobs
>>> x氓辣,y =?make_blobs?(n_samples = 500 秒裕,centers = 2 ,
random_state = 0 钞啸,cluster_std = 0 .40 )
>>>將matplotlib.pyplot導入為plt
>>> plt几蜻。scatter?(x [ :,0 ] 体斩,x [ :梭稚,1 ] ,c = y絮吵,s = 50 弧烤,cmap = 'plasma' )
位于0x04E1BBF0的
>>> plt。show?()
Python機器學習算法 - SVM
>>>將numpy導入為np
>>> xfit = np蹬敲。linspace?(- 1 暇昂,3 0.5 )
>>> plt。scatter?(X [ :伴嗡,0 ] 急波,X [ :,1 ] 瘪校,c = Y澄暮,s = 50 ,cmap = 'plasma' )
>>>為M渣淤,B赏寇,d在[ (1 ,0.65 价认,0.33 )嗅定,(0.5 ,1.6 用踩,0.55 )渠退,(- 0 0.2 ,2 0.9 脐彩,0.2 )] :
yfit = m * xfit + b
PLT日矫。情節(jié)(xfit沪铭,yfit,' - k' )
PLT。fill_between (xfit 珊膜,yfit - d,yfit + d,edgecolor = 'none' ,
color = '#AFFEDC' 嵌言,alpha = 0.4 )
[]
[]
[]
>>> plt。XLIM?(- 1 及穗,3.5 )
(-1,3.5)
>>> plt摧茴。show?()
Python機器學習算法 - SVM
5, 樸素貝葉斯
樸素貝葉斯是一種基于貝葉斯定理的分類方法埂陆。這假定預測變量之間的獨立性苛白。樸素貝葉斯分類器將假定類中的特征與任何其他特征無關》偈考慮一個水果购裙。這是一個蘋果,如果它是圓形著摔,紅色缓窜,直徑2.5英寸定续。樸素貝葉斯分類器將說這些特征獨立地促成果實成為蘋果的概率谍咆。即使功能相互依賴,這也是如此私股。
對于非常大的數(shù)據(jù)集摹察,很容易構建樸素貝葉斯模型。這種模型不僅非常簡單倡鲸,而且比許多高度復雜的分類方法表現(xiàn)更好供嚎。讓我們建立這個。
>>>來自sklearn.naive_bayes導入GaussianNB
>>>來自sklearn.naive_bayes導入MultinomialNB
>>>來自sklearn導入數(shù)據(jù)集
>>>來自sklearn.metrics import confusion_matrix
>>>來自sklearn.model_selection import train_test_split
>>> iris =數(shù)據(jù)集峭状。load_iris?()
>>> x = iris.data
>>> y = iris.target
>>> x_train克滴,x_test,y_train优床,y_test =?train_test_split?(x劝赔,y,test_size = 0 .3 胆敞,random_state = 0 )
>>> gnb =?GaussianNB?()
>>> MNB =?MultinomialNB?()
>>> y_pred_gnb = gnb着帽。適合(x_train,y_train )移层。預測(x_test )
>>> cnf_matrix_gnb =?confusion_matrix?(y_test仍翰,y_pred_gnb )
>>> cnf_matrix_gnb
數(shù)組([[16,0,0],
[0,18,0]观话,
[0,0,11]]予借,dtype = int64)
>>> y_pred_mnb = mnb。適合(x_train,y_train )灵迫。預測(x_test )
>>> cnf_matrix_mnb =?confusion_matrix?(y_test喧笔,y_pred_mnb )
>>> cnf_matrix_mnb
數(shù)組([[16,0,0],
[0,0,18]龟再,
[0,0,11]]书闸,dtype = int64)
6。kNN(k-Nearest Neighbors)
這是一種用于分類和回歸的Python機器學習算法 - 主要用于分類利凑。這是一種監(jiān)督學習算法浆劲,它考慮不同的質心并使用通常的歐幾里德函數(shù)來比較距離。然后哀澈,它分析結果并將每個點分類到組以優(yōu)化它以放置所有最接近的點牌借。它使用其鄰居k的多數(shù)票對新案件進行分類。它分配給一個類的情況是其K個最近鄰居中最常見的一個割按。為此膨报,它使用距離函數(shù)。
I,對整個數(shù)據(jù)集進行培訓和測試
>>>來自sklearn.datasets import load_iris
>>> iris =?load_iris?()
>>> x = iris.data
>>> y = iris.target
>>>來自sklearn.linear_model import LogisticRegression
>>> logreg =?LogisticRegression?()
>>> logreg适荣。適合(x现柠,y )
LogisticRegression(C = 1.0,class_weight = None弛矛,dual = False够吩,fit_intercept = True,
intercept_scaling = 1丈氓,max_iter = 100周循,multi_class ='ovr',n_jobs = 1万俗,
penalty ='l2'湾笛,random_state = None,solver ='liblinear'闰歪,tol = 0.0001嚎研,
verbose = 0,warm_start = False)
>>> logreg课竣。預測(x )
array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0嘉赎,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
2,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,1,1于樟,
1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2公条,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]]
>>> y_pred = logreg迂曲。預測(x )
>>>?len?(y_pred )
150
>>>來自sklearn導入指標
>>>指標靶橱。accuracy_score?(y,y_pred )
0.96
>>>來自sklearn.neighbors導入KNeighborsClassifier
>>> knn =?KNeighborsClassifier?(n_neighbors = 5 )
>>> knn。適合(x关霸,y )
KNeighborsClassifier(algorithm ='auto'传黄,leaf_size = 30,metric ='minkowski'队寇,
metric_params =無膘掰,n_jobs = 1,n_neighbors = 5佳遣,p = 2识埋,
權重=“均勻”)
>>> y_pred = knn。預測(x )
>>>指標零渐。accuracy_score?(y窒舟,y_pred )
0.9666666666666667
>>> knn =?KNeighborsClassifier?(n_neighbors = 1 )
>>> knn。適合(x诵盼,y )
KNeighborsClassifier(algorithm ='auto'惠豺,leaf_size = 30,metric ='minkowski'风宁,
metric_params =無洁墙,n_jobs = 1,n_neighbors = 1杀糯,p = 2扫俺,
權重=“均勻”)
>>> y_pred = knn苍苞。預測(x )
>>>指標固翰。accuracy_score?(y,y_pred )
1.0
II羹呵。分裂成火車/測試
>>> x.shape
(150,4)
>>> y.shape
(150)
>>>來自sklearn.cross_validation import train_test_split
>>> x.shape
(150,4)
>>> y.shape
(150)
>>>來自sklearn.cross_validation import train_test_split
>>> x_train骂际,x_test,y_train冈欢,y_test =?train_test_split?(x歉铝,y,test_size = 0.4 凑耻,random_state = 4 )
>>> x_train.shape
(90,4)
>>> x_test.shape
(60,4)
>>> y_train.shape
(90)
>>> y_test.shape
(60)
>>> logreg =?LogisticRegression?()
>>> logreg太示。適合(x_train,y_train )
>>> y_pred = knn香浩。預測(x_test )
>>>指標类缤。accuracy_score?(y_test,y_pred )
0.9666666666666667
>>> knn =?KNeighborsClassifier?(n_neighbors = 5 )
>>> knn邻吭。適合(x_train餐弱,y_train )
KNeighborsClassifier(algorithm ='auto',leaf_size = 30,metric ='minkowski'膏蚓,
metric_params =無瓢谢,n_jobs = 1,n_neighbors = 5驮瞧,p = 2氓扛,
權重=“均勻”)
>>> y_pred = knn。預測(x_test )
>>>指標幢尚。accuracy_score?(y_test翅楼,y_pred )
0.9666666666666667
>>> k_range =?范圍(1 ,26 )
>>>得分= [ ]
>>> for k in k_range:
knn =?KNeighborsClassifier?(n_neighbors = k )
KNN毅臊。適合(x_train理茎,y_train )
y_pred = knn管嬉。預測(x_test )
分數(shù)。追加(指標蚯撩。accuracy_score?(y_test础倍,y_pred ))
>>>分數(shù)
[0.95胎挎,0.95,0.9666666666666667德迹,0.9666666666666667揭芍,0.9666666666666667,0.9833333333333333肌毅,0.9833333333333333姑原,0.9833333333333333页衙,0.9833333333333333阴绢,0.9833333333333333呻袭,0.9833333333333333腺兴,0.9833333333333333页响,0.9833333333333333,0.9833333333333333栈拖,0.9833333333333333没陡,0.9833333333333333盼玄,0.9833333333333333贴彼,0.9666666666666667器仗,0.9833333333333333童番,0.9666666666666667妓盲,0.9666666666666667,0.9666666666666667,0.9666666666666667 0.95筋粗,0.95 ]
>>>將matplotlib.pyplot導入為plt
>>> plt炸渡。情節(jié)(k_range蚌堵,分數(shù))
[]
>>> plt沛婴。xlabel?('k代表kNN' )
文字(0.5,0嘁灯,'k為kNN')
>>> plt丑婿。ylabel?('測試準確度' )
文字(0,0.5没卸,'測試準確度')
>>> plt约计。show?()
Python機器學習算法 - kNN(k-Nearest Neighbors)
閱讀Python統(tǒng)計數(shù)據(jù) - p值,相關性炫加,T檢驗俗孝,KS檢驗
7魄健。K-Means
k-Means是一種無監(jiān)督算法沽瘦,可以解決聚類問題析恋。它使用許多集群對數(shù)據(jù)進行分類。類中的數(shù)據(jù)點與同類組是同構的和異構的筑凫。
>>>將numpy導入為np
>>>將matplotlib.pyplot導入為plt
>>>來自matplotlib導入樣式
>>>風格巍实。使用('ggplot' )
>>>來自sklearn.cluster導入KMeans
>>> X = [ 1 哩牍,5 膝昆,1 0.5 叠必,8 纬朝,1 玄组,9 ]
>>> Y = [ 2 谒麦,8 绕德,1.7 ,6 踪蹬,0 0.2 跃捣,12 ]
>>> plt夺蛇。散射(x刁赦,y )
>>> x = np甚脉。陣列([ [ 1 ,2 ] 狡耻,[ 5 酝豪,8 ] 精堕,[ 1.5 歹篓,1 0.8 ] 庄撮,[ 8 ,8 ] 毡庆,[ 1 么抗,0 0.6 ] 亚铁,[ 9 徘溢,11 ] ] )
>>> kmeans =?KMeans?(n_clusters = 2 )
>>> kmeans然爆。適合(x )
KMeans(algorithm ='auto',copy_x = True奴烙,init ='k-means ++'缸沃,max_iter = 300趾牧,
n_clusters = 2肯污,n_init = 10蹦渣,n_jobs = 1柬唯,precompute_distances ='auto',
random_state =無失晴,tol = 0.0001涂屁,verbose = 0)
>>> centroids = kmeans.cluster_centers_
>>> labels = kmeans.labels_
>>>質心
數(shù)組([[1.16666667,1.46666667]拆又,
[7.33333333,9。]])
>>>標簽
數(shù)組([0,1,0,1,0,1])
>>> colors = [ 'g帖族。' 盟萨,'r捻激。' 胞谭,'c。' 调俘,'呃彩库。' ]
>>> for i in?range?(len?(x )):
print?(x [ i ] 骇钦,labels [ i ] )
PLT眯搭。plot (x [ i ] [ 0 ] 业岁,x [ i ] [ 1 ] 笔时,colors [ labels [ i ] ] ,markersize = 10 )
[1爹梁。2.] 0
[]
[5提澎。8.] 1
[]
[1.5 1.8] 0
[]
[8盼忌。8.] 1
[]
[1谦纱。0.6] 0
[]
[9. 11.] 1
[]
>>> plt跨嘉。scatter (centroids [ :吃嘿,0 ] 兑燥,centroids [ :降瞳,1 ] 挣饥,marker = 'x' ,s = 150 汛聚,linewidths = 5 贞岭,zorder = 10 )
>>> plt瞄桨。show?()
8芯侥。Random Forest
Random Forest是決策樹的集合柱查。為了根據(jù)其屬性對每個新對象進行分類唉工,樹投票給類 - 每個樹提供一個分類淋硝。投票最多的分類在Random
中獲勝谣膳。
>>>將numpy導入為np
>>>將pylab導入為pl
>>> x = np.random继谚。均勻的(1 ,100 芽世,1000 )
>>> y = np捂襟。log (x )+ np.random葬荷。正常(0 宠漩,扒吁。3 室囊,1000 )
>>> pl融撞。scatter (x尝偎,y,s = 1 当辐,label = 'log(x)with noise' )
>>> pl缘揪。情節(jié)(NP寺晌。人氣指數(shù)(1 澡刹,100 )罢浇,NP嚷闭。日志(NP胞锰。人氣指數(shù)(1 嗅榕,100 ))中凌那,c = 'B' 帽蝶,標記= '日志(x)的函數(shù)真' )
[]
>>> pl励稳。xlabel?('x' )
文本(0.5,0驹尼, 'X')
>>> pl扶欣。ylabel?('f(x)= log(x)' )
文本(0,0.5料祠, 'F(X)=日志(X)')
>>> pl髓绽。傳奇(loc = 'best' )
>>> pl顺呕。標題('基本日志功能' )
文字(0.5,1株茶,'基本日志功能')
>>> pl启盛。show?()
Python機器學習算法 -
>>>來自sklearn.datasets import load_iris
>>>來自sklearn.ensemble導入RandomForestClassifier
>>>將pandas導入為pd
>>>將numpy導入為np
>>> iris =?load_iris?()
>>> df = pd卧抗。DataFrame?(iris.data鳖粟,columns = iris.feature_names )
>>> df [ 'is_train' ] = np.random。均勻的(0 向图,1 泳秀,LEN?(DF ))<=。75
>>> df [ 'species' ] = pd.Categorical张漂。from_codes (iris.target晶默,iris.target_names )
>>> df。頭()
萼片長度(厘米)萼片寬度(厘米)... is_train物種
0 5.1 3.5 ...真正的setosa
1 4.9 3.0 ...真正的setosa
2 4.7 3.2 ...真正的setosa
3 4.6 3.1 ...真正的setosa
4 5.0 3.6 ...假setosa
[5行x 6列]
>>> train航攒,test = df [ df [ 'is_train' ] == True ] 磺陡,df [ df [ 'is_train' ] == False ]
>>> features = df.columns [ :4 ]
>>> clf =?RandomForestClassifier?(n_jobs = 2 )
>>> y漠畜,_ = pd币他。factorize (train [ 'species' ] )
>>> clf。適合(火車[ 功能] 憔狞,y )
RandomForestClassifier(bootstrap = True蝴悉,class_weight = None,criterion ='gini'瘾敢,
max_depth =無拍冠,max_features ='auto'尿这,max_leaf_nodes =無,
min_impurity_decrease = 0.0庆杜,min_impurity_split =無射众,
min_samples_leaf = 1,min_samples_split = 2晃财,
min_weight_fraction_leaf = 0.0叨橱,n_estimators = 10,n_jobs = 2断盛,
oob_score = False罗洗,random_state = None,verbose = 0钢猛,
warm_start = FALSE)
>>> preds = iris.target_names [ clf伙菜。預測(測試[ 特征] )]
>>> pd。交叉表(test [ 'species' ] 厢洞,preds仇让,rownames = [ 'actual' ] ,colnames = [ 'preds' ] )
preds setosa versicolor virginica
實際
setosa 12 0 0
versicolor 0 17 2
virginica 0 1 15
所以躺翻,這就是Python機器學習算法教程。希望你喜歡卫玖。
因此公你,今天我們討論了八個重要的Python機器學習算法。您認為哪一個最具潛力假瞬?希望大家多多關注陕靠,更多精彩的文章帶給大家!
大家對大數(shù)據(jù)感興趣的可以關注我的微信公眾號:大數(shù)據(jù)技術工程師
里面每天都會分享一些精彩文章脱茉,更有大數(shù)據(jù)基礎與項目實戰(zhàn)剪芥,java面試技巧,Python學習資料等等? 提供給大家免費學習琴许,回復關鍵字就可以領取哦