Notes for "On the mathematical foundations of learning"

This is a note for the following paper:
F. Cucker, S. Smale, On the mathematical foundations of learning, Bulletin of The American Mathematical Society, 39(1), 1-49, 2001.

Page 6, Remark 2

In addition, \sigma_{\rho}^{2} = 0, the error above specializes to the error mentioned in that discussion, and the regression function f_{\rho} of \rho coincides with f_{T} execpt for a set of measure zero in X.

Note:
For a given x, we have
y = \left\{\begin{aligned} & 1 \quad x\in T, \\ & 0 \quad x\notin T. \end{aligned}\right.
For the regression function, we may have
f_{\rho}(x) = \int_{Y}yd\rho(y|x) = 1\rho(1|x) + 0\rho(0|x),
where \rho(1|x) = 1 for x\in T and \rho(1|x) = 0 for x\notin T. Hence, we find that
f_{\rho}(x) = \left\{\begin{aligned} & 1 \quad x\in T, \\ & 0 \quad x\notin T, \end{aligned}\right.
which coincides with f_{T}.

Page 10, line 6

Thus, \mathcal{H}_d is a vector space of dimension
N = \left(\begin{aligned} & n+d \\ & \quad n \end{aligned}\right).

Note:
Obviously, the conclusion is correct for n = 1. We employ second mathematical induction to illustrate the result. Suppose the result is correct for n-1 to 1, let us verify the case n. For the additional dimension, we can let \alpha_n = 0, 1, \cdots, d. Then, the number of possible ways should be
\left(\begin{aligned} & n-1+d \\ & \quad n-1 \end{aligned}\right) + \left(\begin{aligned} & n-1+d - 1 \\ & \qquad n-1 \end{aligned}\right) + \cdots + \left(\begin{aligned} & n-1 \\ & n-1 \end{aligned}\right).
Written the above formula in a concise manner, we obtain
\sum_{i=0}^zhv1xjf\left(\begin{aligned} & n-1+i \\ & \quad n-1 \end{aligned}\right) = \sum_{i=0}^wpiaesk\left(\begin{aligned} & n-1+i \\ & \quad\quad i \end{aligned}\right) = \left(\begin{aligned} & n + d \\ & \quad d \end{aligned}\right) = \left(\begin{aligned} & n + d \\ & \quad n \end{aligned}\right).
These calculations verify the desired conclusions.

Page 21, The proof of Proposition 7

Proposition 7 follows from Lemma 8 by applying the same argument used to prove Theorem B from Proposition 3

Note:
Let \ell = \mathcal{N}\left(\mathcal{H}, \frac{\alpha\epsilon}{4M}\right) and consider f_1, \cdots, f_\ell such that the disks D_j centered at f_j and with radius \frac{\alpha\epsilon}{4M} cover \mathcal{H}. Then for every f\in D_j, we have \|f-f_j\|_{\infty} \leq \frac{\alpha\epsilon}{4M}. Employing Lemma 8, we find that
\begin{align} & \text{Prob}_{z\in Z^m}\left\{ \sup_{f\in D_j} \frac{ \mathcal{E}_{\mathcal{H}}(f)-\mathcal{E}_{\mathcal{H},z}(f)}{\mathcal{E}_{\mathcal{H}}(f)+\epsilon} \geq 3\alpha\right\} \\ \leq & \text{Prob}_{z\in Z^m}\left\{ \frac{ \mathcal{E}_{\mathcal{H}}(f_j)-\mathcal{E}_{\mathcal{H},z}(f_j)}{\mathcal{E}_{\mathcal{H}}(f_j)+\epsilon} \geq 3\alpha\right\} \leq e^{-\frac{\alpha^2 m\epsilon}{8M^2}}. \end{align}
Proposition 7 has been proved.

Page 27, Proof of Theorem 3

First note that by replacing A by A^s we can reduce the problem in both part (1) and (2) to the case s=1

Note:
Since s > r > 0 is equivalent to 1 > r' > 0 with r' = \frac{r}{s}. From the proof, especially the formula of \hat{t}, we know that
\min_{b\in H}\|b-a\|^2 + \gamma \|A^{-1}b\|^2 \leq \gamma^{r'} \|A^{-r'}a\|^2
holds true when 0<r'<1. Replacing A with A^{s}, we obtain
\min_{b\in H}\|b-a\|^2 + \gamma \|A^{-s}b\|^2 \leq \gamma^{r'} \|A^{-sr'}a\|^2.
Finally, we arrive at
\min_{b\in H}\|b-a\|^2 + \gamma \|A^{-s}b\|^2 \leq \gamma^{r/s} \|A^{-r}a\|^2
with 0 < r< s. Similarly, we can deduce the estimation (2). Here, the result (1) is slightly different from the statment in Theorem 3. It may be a small mistake.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末怠李,一起剝皮案震驚了整個濱河市蒿柳,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌缩挑,老刑警劉巖星持,帶你破解...
    沈念sama閱讀 217,406評論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)旺坠,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,732評論 3 393
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來扮超,“玉大人价淌,你說我怎么就攤上這事÷鹘颍” “怎么了?”我有些...
    開封第一講書人閱讀 163,711評論 0 353
  • 文/不壞的土叔 我叫張陵括尸,是天一觀的道長巷蚪。 經(jīng)常有香客問我,道長濒翻,這世上最難降的妖魔是什么屁柏? 我笑而不...
    開封第一講書人閱讀 58,380評論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮有送,結(jié)果婚禮上淌喻,老公的妹妹穿的比我還像新娘。我一直安慰自己雀摘,他們只是感情好裸删,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,432評論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著阵赠,像睡著了一般涯塔。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上清蚀,一...
    開封第一講書人閱讀 51,301評論 1 301
  • 那天匕荸,我揣著相機(jī)與錄音,去河邊找鬼枷邪。 笑死榛搔,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播践惑,決...
    沈念sama閱讀 40,145評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼腹泌,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了童本?” 一聲冷哼從身側(cè)響起真屯,我...
    開封第一講書人閱讀 39,008評論 0 276
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎穷娱,沒想到半個月后绑蔫,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,443評論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡泵额,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,649評論 3 334
  • 正文 我和宋清朗相戀三年配深,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片嫁盲。...
    茶點(diǎn)故事閱讀 39,795評論 1 347
  • 序言:一個原本活蹦亂跳的男人離奇死亡篓叶,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出羞秤,到底是詐尸還是另有隱情缸托,我是刑警寧澤,帶...
    沈念sama閱讀 35,501評論 5 345
  • 正文 年R本政府宣布瘾蛋,位于F島的核電站俐镐,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏哺哼。R本人自食惡果不足惜佩抹,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,119評論 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望取董。 院中可真熱鬧棍苹,春花似錦、人聲如沸茵汰。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,731評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽经窖。三九已至坡垫,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間画侣,已是汗流浹背冰悠。 一陣腳步聲響...
    開封第一講書人閱讀 32,865評論 1 269
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留配乱,地道東北人溉卓。 一個月前我還...
    沈念sama閱讀 47,899評論 2 370
  • 正文 我出身青樓皮迟,卻偏偏與公主長得像,于是被迫代替她去往敵國和親桑寨。 傳聞我的和親對象是個殘疾皇子伏尼,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,724評論 2 354

推薦閱讀更多精彩內(nèi)容