引言
對(duì)于一些開始搞機(jī)器學(xué)習(xí)算法有害怕下手的小朋友禁熏,該如何快速入門敏簿,這讓人挺掙扎的涎跨。
在從事數(shù)據(jù)科學(xué)的人中延刘,最常用的工具就是R和Python了,每個(gè)工具都有其利弊六敬,但是Python在各方面都相對(duì)勝出一些,這是因?yàn)閟cikit-learn庫(kù)實(shí)現(xiàn)了很多機(jī)器學(xué)習(xí)算法驾荣。
加載數(shù)據(jù)(Data Loading)
我們假設(shè)輸入時(shí)一個(gè)特征矩陣或者csv文件外构。
首先普泡,數(shù)據(jù)應(yīng)該被載入內(nèi)存中。
scikit-learn的實(shí)現(xiàn)使用了NumPy中的arrays审编,所以撼班,我們要使用NumPy來載入csv文件。
以下是從UCI機(jī)器學(xué)習(xí)數(shù)據(jù)倉(cāng)庫(kù)中下載的數(shù)據(jù)垒酬。
import numpy as np
import urllib
# url with dataset
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
# download the file
raw_data = urllib.urlopen(url)
# load the CSV file as a numpy matrix
dataset = np.loadtxt(raw_data, delimiter=",")
# separate the data from the target attributes
X = dataset[:,0:7]
y = dataset[:,8]
我們要使用該數(shù)據(jù)集作為例子砰嘁,將特征矩陣作為X,目標(biāo)變量作為y勘究。
數(shù)據(jù)歸一化(Data Normalization)
大多數(shù)機(jī)器學(xué)習(xí)算法中的梯度方法對(duì)于數(shù)據(jù)的縮放和尺度都是很敏感的矮湘,在開始跑算法之前,我們應(yīng)該進(jìn)行歸一化或者標(biāo)準(zhǔn)化的過程口糕,這使得特征數(shù)據(jù)縮放到0-1范圍中缅阳。scikit-learn提供了歸一化的方法:
from sklearn import preprocessing
# normalize the data attributes
normalized_X = preprocessing.normalize(X)
# standardize the data attributes
standardized_X = preprocessing.scale(X)
特征選擇(Feature Selection)
在解決一個(gè)實(shí)際問題的過程中,選擇合適的特征或者構(gòu)建特征的能力特別重要景描。這成為特征選擇或者特征工程十办。
特征選擇時(shí)一個(gè)很需要?jiǎng)?chuàng)造力的過程,更多的依賴于直覺和專業(yè)知識(shí)超棺,并且有很多現(xiàn)成的算法來進(jìn)行特征的選擇向族。
下面的樹算法(Tree algorithms)計(jì)算特征的信息量:
from sklearn import metrics
from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, y)
# display the relative importance of each attribute
print(model.feature_importances_)
算法的使用
scikit-learn實(shí)現(xiàn)了機(jī)器學(xué)習(xí)的大部分基礎(chǔ)算法,讓我們快速了解一下棠绘。
邏輯回歸
大多數(shù)問題都可以歸結(jié)為二元分類問題件相。這個(gè)算法的優(yōu)點(diǎn)是可以給出數(shù)據(jù)所在類別的概率。
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, penalty=l2, random_state=None, tol=0.0001)
precision recall f1-score support
0.0 0.79 0.89 0.84 500 1.0 0.74 0.55 0.63 268
avg / total 0.77 0.77 0.77 768
[[447 53]
[120 148]]
樸素貝葉斯
這也是著名的機(jī)器學(xué)習(xí)算法弄唧,該方法的任務(wù)是還原訓(xùn)練樣本數(shù)據(jù)的分布密度适肠,其在多類別分類中有很好的效果。
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
GaussianNB()
precision recall f1-score support
0.0 0.80 0.86 0.83 500
1.0 0.69 0.60 0.64 268
avg / total 0.76 0.77 0.76 768
[[429 71]
[108 160]]
k近鄰
k近鄰算法常常被用作是分類算法一部分候引,比如可以用它來評(píng)估特征侯养,在特征選擇上我們可以用到它。
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
# fit a k-nearest neighbor model to the data
model = KNeighborsClassifier()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
KNeighborsClassifier(algorithm=auto, leaf_size=30, metric=minkowski,
n_neighbors=5, p=2, weights=uniform)
precision recall f1-score support
0.0 0.82 0.90 0.86 500
1.0 0.77 0.63 0.69 268
avg / total 0.80 0.80 0.80 768
[[448 52]
[ 98 170]]
決策樹
分類與回歸樹(Classification and Regression Trees ,CART)算法常用于特征含有類別信息的分類或者回歸問題澄干,這種方法非常適用于多分類情況逛揩。
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
# fit a CART model to the data
model = DecisionTreeClassifier()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
DecisionTreeClassifier(compute_importances=None, criterion=gini,
max_depth=None, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter=best)
precision recall f1-score support
0.0 1.00 1.00 1.00 500
1.0 1.00 1.00 1.00 268
avg / total 1.00 1.00 1.00 768
[[500 0]
[ 0 268]]
支持向量機(jī)
SVM是非常流行的機(jī)器學(xué)習(xí)算法,主要用于分類問題麸俘,如同邏輯回歸問題辩稽,它可以使用一對(duì)多的方法進(jìn)行多類別的分類。
from sklearn import metrics
from sklearn.svm import SVC
# fit a SVM model to the data
model = SVC()
model.fit(X, y)
print(model)
# make predictions
expected = y
predicted = model.predict(X)
# summarize the fit of the model
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
結(jié)果:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel=rbf, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
precision recall f1-score support
0.0 1.00 1.00 1.00 500
1.0 1.00 1.00 1.00 268
avg / total 1.00 1.00 1.00 768
[[500 0]
[ 0 268]]
除了分類和回歸算法外从媚,scikit-learn提供了更加復(fù)雜的算法逞泄,比如聚類算法,還實(shí)現(xiàn)了算法組合的技術(shù),如Bagging和Boosting算法喷众。
如何優(yōu)化算法參數(shù)
一項(xiàng)更加困難的任務(wù)是構(gòu)建一個(gè)有效的方法用于選擇正確的參數(shù)各谚,我們需要用搜索的方法來確定參數(shù)。scikit-learn提供了實(shí)現(xiàn)這一目標(biāo)的函數(shù)到千。
下面的例子是一個(gè)進(jìn)行正則參數(shù)選擇的程序:
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.grid_search import GridSearchCV
# prepare a range of alpha values to test
alphas = np.array([1,0.1,0.01,0.001,0.0001,0])
# create and fit a ridge regression model, testing each alpha
model = Ridge()
grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))
grid.fit(X, y)
print(grid)
# summarize the results of the grid search
print(grid.best_score_)
print(grid.best_estimator_.alpha)
結(jié)果:
GridSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, loss_func=None,
n_jobs=1,
param_grid={'alpha': array([ 1.00000e+00, 1.00000e-01, 1.00000e-02, 1.00000e-03,
1.00000e-04, 0.00000e+00])},
pre_dispatch=2*n_jobs, refit=True, score_func=None, scoring=None,
verbose=0)
0.282118955686
1.0
有時(shí)隨機(jī)從給定區(qū)間中選擇參數(shù)是很有效的方法昌渤,然后根據(jù)這些參數(shù)來評(píng)估算法的效果進(jìn)而選擇最佳的那個(gè)。
import numpy as np
from scipy.stats import uniform as sp_rand
from sklearn.linear_model import Ridge
from sklearn.grid_search import RandomizedSearchCV
# prepare a uniform distribution to sample for the alpha parameter
param_grid = {'alpha': sp_rand()}
# create and fit a ridge regression model, testing random alpha values
model = Ridge()
rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100)
rsearch.fit(X, y)
print(rsearch)
# summarize the results of the random parameter search
print(rsearch.best_score_)
print(rsearch.best_estimator_.alpha)
結(jié)果:
RandomizedSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, n_iter=100,
n_jobs=1,
param_distributions={'alpha': <scipy.stats.distributions.rv_frozen object at 0x04B86DD0>},
pre_dispatch=2*n_jobs, random_state=None, refit=True,
scoring=None, verbose=0)
0.282118643885
0.988443794636
小結(jié)
我們總體了解了使用scikit-learn庫(kù)的大致流程憔四,希望這些總結(jié)能讓初學(xué)者沉下心來膀息,一步一步盡快的學(xué)習(xí)如何去解決具體的機(jī)器學(xué)習(xí)問題。
轉(zhuǎn)載請(qǐng)注明作者Jason Ding及其出處
GitCafe博客主頁(yè)(http://jasonding1354.gitcafe.io/)
Github博客主頁(yè)(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
簡(jiǎn)書主頁(yè)(http://www.reibang.com/users/2bd9b48f6ea8/latest_articles)
百度搜索jasonding1354進(jìn)入我的博客主頁(yè)