使用Miniconda配置機(jī)器學(xué)習(xí)環(huán)境
隨著研究的進(jìn)一步推進(jìn),即將開展對ML方法應(yīng)用的工作伟墙,首先就需要搭建能work的工作環(huán)境解幽。在踩坑后,發(fā)現(xiàn)cuda窘拯,cudnn和pytorch之間的版本對應(yīng)關(guān)系非常重要红且。在這里記錄一下自己搭建環(huán)境的摸索過程坝茎,這樣以后需要搭建新的環(huán)境時(shí)就不會(huì)手忙腳亂啦!
1. 創(chuàng)建虛擬環(huán)境
為了防止出現(xiàn)環(huán)境的沖突暇番,我們新建一個(gè)虛擬環(huán)境嗤放。
conda create -n tf python=3.8
conda activate tf
創(chuàng)建一個(gè)python版本為3.8的環(huán)境命名為tf
,并激活此環(huán)境壁酬。
在這里也記錄一下刪除環(huán)境的指令次酌。
conda remove -n $env_name --all
2. 查看本機(jī)的GPU型號(hào)和CUDA版本
nvidia-smi
輸出為
這里我使用的機(jī)器上的GPU是英偉達(dá),CUDA版本為11.6舆乔。這個(gè)版本目前來說是最新的岳服,但是對應(yīng)的cudnn版本和pytorch很難找到,所以后面我選擇使用11.3的版本重新安裝希俩。
3. 安裝CUDA和CUDNN
查找對應(yīng)的CUDA派阱,CUDNN版本,鏈接:https://www.tensorflow.org/install/source#linux
我選擇了CUDA11.3+cudnn8.2+tensorflow-gpu2.7的組合斜纪。
- 首先,安裝CUDA文兑。
其他攻略里有提到需要先卸載原先的CUDA再安裝盒刚,但我這里沒有管理員權(quán)限,所以只能利用conda在我的虛擬環(huán)境中安裝新的CUDA绿贞。
因?yàn)橐惨惭bpytorch因块,現(xiàn)在的版本在安裝pytorch時(shí)系統(tǒng)會(huì)給你選擇合適的cuda版本,所以cuda的安裝是在pytorch的安裝時(shí)順帶的籍铁。官網(wǎng)鏈接:https://pytorch.org/
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
- 第二涡上,安裝cudnn。
上一步完成時(shí)拒名,對應(yīng)cudnn是沒有安裝的吩愧。如果cudnn沒有安裝正確,在運(yùn)行模型時(shí)會(huì)報(bào)錯(cuò)(踩過的坑之一)增显。
conda install cudnn=8.2
4. 安裝Tensorflow
這一步?jīng)]有太多波瀾雁佳,直接安裝
conda install tensorflow-gpu=2.7
這里,查過的很多攻略用的是pip來安裝同云,但考慮到pip安裝最終是全局安裝糖权,造成包管理混亂的問題,所以我還是選擇了conda來安裝炸站。
5. Quick check
import tensorflow as tf
tf.test.is_gpu_available()
import torch
torch.cuda.is_available()
以上星澳。