2020年4月14日,Sanger研究團(tuán)隊(duì)于nature communication在線發(fā)表了題為Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines的研究?jī)?nèi)容维哈,作者使用蛋白質(zhì)組學(xué)、bulk RNA-seq和單細(xì)胞轉(zhuǎn)錄組測(cè)序?qū)θ梭w40,000個(gè)以上的na?ve and memory CD4+ T cells進(jìn)行分析放仗,發(fā)現(xiàn)細(xì)胞類型之間的細(xì)胞因子反應(yīng)差異很大秉撇。memory T細(xì)胞
不能分化為Th2
表型灵迫,但可以響應(yīng)iTreg
極化獲得類似Th17
的表型照雁。單細(xì)胞分析表明蚕愤,T細(xì)胞構(gòu)成了一個(gè)轉(zhuǎn)錄連續(xù)體(transcriptional continuum
)答恶,從幼稚到中樞和效應(yīng)記憶T細(xì)胞饺蚊,形成了一種效應(yīng)梯度,并伴隨著趨化因子和細(xì)胞因子表達(dá)的增加悬嗓。最后污呼,作者表明,T細(xì)胞活化和細(xì)胞因子反應(yīng)受效應(yīng)梯度的影響包竹。
該文獻(xiàn)通過(guò)蛋白質(zhì)組學(xué)((液相色譜-串聯(lián)質(zhì)譜法燕酷,LC-MS/MS
)進(jìn)行了探索性分析,樣品對(duì)應(yīng)于從健康個(gè)體的外周血中分離的幼稚和記憶T細(xì)胞周瞎,并用多種細(xì)胞因子刺激5天苗缩,每個(gè)條件平均3個(gè)生物學(xué)重復(fù)。
這次復(fù)現(xiàn)Fig1cPCA圖和Fig2aPCA圖的另一部分声诸,這次作者是通過(guò)蛋白組學(xué)數(shù)據(jù)進(jìn)行PCA的展現(xiàn):
以上是Fig1c原圖酱讶,圖注為“PCA plots from the whole transcriptome of TN and TM cells. Different colors correspond to cell types and different shades to stimulation time points. PCA plots were derived using 21 naive and 19 memory T cell samples for proteomics”
以上為Fig 2a原圖,圖注為“PCA plot from the full transcriptome of TN and TM cells following five days of cytokine stimulations. Only stimulated cells were included in this analysis. PCA plots were derived using 18 naive and 17 memory T cells samples ”
我們需要復(fù)現(xiàn)該圖之前彼乌,先需要下載數(shù)據(jù)泻肯,可以點(diǎn)擊https://www.opentargets.org/projects/effectorness
對(duì)proteomics的abundances數(shù)據(jù)和metadata數(shù)據(jù)進(jìn)行下載渊迁,然后進(jìn)行以下步驟:
library(SummarizedExperiment)
library(annotables)
library(rafalib)
library(ggplot2)
library(ggrepel)library(limma)
加載數(shù)據(jù)
加載標(biāo)準(zhǔn)化后的豐度:
MassSpec_data <- read.table("NCOMMS-19-7936188_MassSpec_scaled_abundances.txt", header = T, stringsAsFactors = F)
View(MassSpec_data)#從以上可以看出,每列除了代表每個(gè)樣本外灶挟,前三列分別為Protein_id琉朽,Gene_id和Gene_name,每行代表一個(gè)蛋白
建立SummarizedExperiment object
創(chuàng)建帶有蛋白質(zhì)注釋的dataframe
protein_annotations <- data.frame(MassSpec_data[,c("Protein_id","Gene_id","Gene_name")], row.names = MassSpec_data$Gene_name)
rownames(MassSpec_data) <- MassSpec_data$Gene_name#構(gòu)成一個(gè)由"Protein_id","Gene_id","Gene_name"的數(shù)據(jù)框MassSpec_data <- MassSpec_data[,-c(1:3)]
創(chuàng)建帶有sample注釋的dataframe
sample_ids <- colnames(MassSpec_data)
sample_annotations <- data.frame(row.names = sample_ids,
donor_id = sapply(sample_ids, function(x){strsplit(x, split = "_")[[1]][1]}),
cell_type = paste("CD4",
sapply(sample_ids, function(x){strsplit(x, split = "_")[[1]][3]}),
sep="_"),
cytokine_condition = sapply(sample_ids, function(x){strsplit(x, split = "_")[[1]][4]}),
stringsAsFactors = T)
sample_annotations$activation_status <- ifelse(sample_annotations$cytokine_condition == "resting", "Resting", "Activated")View(sample_annotations)
創(chuàng)建relevant metadata的變量
meta <- list(
Study="Mapping cytokine induced gene expression changes in human CD4+ T cells",
Experiment="Quantitative proteomics (LC-MS/MS) panel of cytokine induced T cell polarisations",
Laboratory="Trynka Group, Wellcome Sanger Institute",
Experimenter=c("Eddie Cano-Gamez",
"Blagoje Soskic",
"Deborah Plowman"),
Description="To study cytokine-induced cell polarisation, we isolated human naive and memory CD4+ T cells in triplicate from peripheral blood of healthy individuals. Next, we polarised the cells with different cytokine combinations linked to autoimmunity and performed LC-MS/MS.",
Methdology="LC-MS/MS with isobaric labelling",
Characteristics="Data type: Normalised, scaled protein abundances",
Date="September, 2019",
URL="https://doi.org/10.1101/753731")
建立SummarizedExperiment object
proteomics_data <- SummarizedExperiment(assays=list(counts=as.matrix(MassSpec_data)),
colData=sample_annotations,
rowData=protein_annotations,
metadata=meta)saveRDS(proteomics_data, file="proteinAbundances_summarizedExperiment.rds")
數(shù)據(jù)可視化
將NA值設(shè)置為零
注意:此操作僅出于可視化目的稚铣。執(zhí)行統(tǒng)計(jì)測(cè)試時(shí)箱叁,NA不會(huì)設(shè)置為零。
assay(proteomics_data)[is.na(assay(proteomics_data))] <- 0
定義函數(shù):
提取蛋白質(zhì)表達(dá)值;
進(jìn)行主成分分析;
返回一個(gè)矩陣惕医,其中包含每個(gè)樣品和樣品注釋的PC坐標(biāo);
返回每個(gè)主要成分解釋的方差百分比蝌蹂。
getPCs <- function(exp){
pcs <- prcomp(t(assay(exp)))
pVar <- pcs$sdev^2/sum(pcs$sdev^2)
pca.mat <- data.frame(pcs$x)
pca.mat$donor_id <- colData(exp)$donor_id
pca.mat$cell_type <- colData(exp)$cell_type
pca.mat$cytokine_condition <- colData(exp)$cytokine_condition
pca.mat$activation_status <- colData(exp)$activation_status
res <- list(pcs = pca.mat, pVar=pVar)
return(res)}
對(duì)所有樣本執(zhí)行PCA
pcs <- getPCs(proteomics_data)
ggplot(data=pcs$pcs, aes(x=PC1, y=PC2, color=cell_type, shape=activation_status)) +
geom_point(size = 8) +
xlab(paste0("PC1:", round(pcs$pVar[1]*100), "% variance")) +
ylab(paste0("PC2: ", round(pcs$pVar[2]*100), "% variance")) +
scale_colour_manual(values = c("#5AB4AC","#AF8DC3")) +
scale_alpha_discrete(range = c(0.5,1)) +
coord_fixed() + theme_bw() +theme(panel.grid = element_blank())
去掉個(gè)體間變異性:
proteomics_data_regressed <- proteomics_data
assay(proteomics_data_regressed) <- removeBatchEffect(assay(proteomics_data_regressed),
batch = factor(as.vector(colData(proteomics_data_regressed)$donor_id)))
重新計(jì)算PCA:
pcs <- getPCs(proteomics_data_regressed)
ggplot(data=pcs$pcs, aes(x=PC1, y=PC2, color=cell_type, shape=activation_status)) +
geom_point(size = 8) +
xlab(paste0("PC1:", round(pcs$pVar[1]*100), "% variance")) +
ylab(paste0("PC2: ", round(pcs$pVar[2]*100), "% variance")) +
scale_colour_manual(values = c("#5AB4AC","#AF8DC3")) +
scale_alpha_discrete(range = c(0.5,1)) +
coord_fixed() + theme_bw() +theme(panel.grid = element_blank())
原圖
細(xì)胞類型特異性分析
將naive和memory T細(xì)胞樣本分為僅包含受刺激細(xì)胞的兩個(gè)不同數(shù)據(jù)集。
proteomics_data_naive <- proteomics_data[,(proteomics_data$cell_type=="CD4_naive") & (proteomics_data$activation_status=="Activated")]proteomics_data_memory <- proteomics_data[,(proteomics_data$cell_type=="CD4_memory") & (proteomics_data$activation_status=="Activated")]
Naive T cells
對(duì) 5 days-stimulated naive T cells
進(jìn)行PCA:
pcs_naive <- getPCs(proteomics_data_naive)
ggplot(data=pcs_naive$pcs, aes(x=PC1, y=PC2)) + geom_point(aes(color=donor_id), size=8) +
xlab(paste0("PC1:", round(pcs_naive$pVar[1]*100), "% variance")) +
ylab(paste0("PC2: ", round(pcs_naive$pVar[2]*100), "% variance")) +
coord_fixed() + theme_bw() +theme(plot.title=element_text(size=20, hjust=0.5), axis.title=element_text(size=14), panel.grid = element_blank(), axis.text=element_text(size=12),legend.text=element_text(size=12), legend.title=element_text(size=12), legend.key.size = unit(1.5,"lines"))
去掉個(gè)體間變異性:
assay(proteomics_data_naive) <- removeBatchEffect(assay(proteomics_data_naive),
batch = factor(as.vector(colData(proteomics_data_naive)$donor_id))
)
pcs_naive <- getPCs(proteomics_data_naive)
ggplot(data=pcs_naive$pcs, aes(x=PC1, y=PC2, color=cytokine_condition)) +
geom_point(size = 8) + geom_label_repel(aes(label=cytokine_condition, color=cytokine_condition)) +
xlab(paste0("PC1: ", round(pcs_naive$pVar[1]*100), "% variance")) +
ylab(paste0("PC2: ", round(pcs_naive$pVar[2]*100), "% variance")) +
scale_colour_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Dark2") +
coord_fixed() + theme_bw() +theme(panel.grid = element_blank(), legend.position = "none")
刪除由PCA標(biāo)識(shí)的異常樣本:
proteomics_data_naive <- proteomics_data_naive[, colnames(proteomics_data_naive) != "D257_CD4_naive_Th1"]
pcs_naive <- getPCs(proteomics_data_naive)
ggplot(data=pcs_naive$pcs, aes(x=PC1, y=PC2, color=cytokine_condition)) +
geom_point(size = 8) + geom_label_repel(aes(label=cytokine_condition, color=cytokine_condition)) +
xlab(paste0("PC1: ", round(pcs_naive$pVar[1]*100), "% variance")) +
ylab(paste0("PC2: ", round(pcs_naive$pVar[2]*100), "% variance")) +
scale_colour_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Dark2") +
coord_fixed() + theme_bw() +theme(panel.grid = element_blank(), legend.position = "none")
原圖
Memory T cells
again曹锨。孤个。。
Performing PCA on 5 days-stimulated memory T cells only.
```{r compute_pca_naive, message=FALSE, warning=FALSE}pcs_memory <- getPCs(proteomics_data_memory)
ggplot(data=pcs_memory$pcs, aes(x=PC1, y=PC2)) + geom_point(aes(color=donor_id), size=8) +
xlab(paste0("PC1:", round(pcs_memory$pVar[1]*100), "% variance")) +
ylab(paste0("PC2: ", round(pcs_memory$pVar[2]*100), "% variance")) +
coord_fixed() + theme_bw() +theme(plot.title=element_text(size=20, hjust=0.5), axis.title=element_text(size=14), panel.grid = element_blank(), axis.text=element_text(size=12),legend.text=element_text(size=12), legend.title=element_text(size=12), legend.key.size = unit(1.5,"lines"))
Regressing out inter-individual variability
assay(proteomics_data_memory) <- removeBatchEffect(assay(proteomics_data_memory),
batch = factor(as.vector(colData(proteomics_data_memory)$donor_id)))
再次計(jì)算PCs
pcs_memory <- getPCs(proteomics_data_memory)
ggplot(data=pcs_memory$pcs, aes(x=PC1, y=PC2, color=cytokine_condition)) +
geom_point(size = 8) + geom_label_repel(aes(label=cytokine_condition, color=cytokine_condition)) +
xlab(paste0("PC1: ", round(pcs_memory$pVar[1]*100), "% variance")) +
ylab(paste0("PC2: ", round(pcs_memory$pVar[2]*100), "% variance")) +
scale_colour_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Dark2") +
coord_fixed() + theme_bw() +theme(panel.grid = element_blank(), legend.position = "none")
原圖
基本分布還是差不多的沛简,齐鲤,,椒楣,
快去試一試呀给郊!