Paper Summary4: Projection-free Online Learning

0 Paper

Hazan, Elad, and Satyen Kale. "Projection-free online learning." arXiv preprint arXiv:1206.4657 (2012).

1 Key contribution

Providing a projection free algorithm for online learning that has the following advantages:
(1) computationally efficient
(2) better regret bounds for cases such as stochastic online smooth convex optimization
(3) parameter-free in the stochastic case and produce sparse decisions

2 Motivation

Assuming it is possible to do
linear optimization over the convex domain efficiently, an algorithm with sublinear for online convex optimization can be achieved via utilizing an online version of the classic Frank-Wolfe algorithm


Frank-Wolfe algorithm from wiki

3 The proposed method

(1) Preliminaries
Diameter of set \kappa is D and f is L-Lipchitz

Beta-smooth and Sigma strongly convex

Smoothed function

\kappa -Sparsity

kappa sparsity

(2) main claim


main claim

(3) Algorithm


OFW

4 Some thoughts

When we propose an algorithm, we may consider the following aspects:
(1) Effective
(2) Parameter-less or parameter-free
(3) Computationally feasible
(4) Sample efficient

First of all, an algorithm should be effective in solving the target problem. Effectiveness is the fundamental requirement. Otherwise, the proposed algorithm is nothing but useless. Secondly, it is advantageous if the algorithm is parameter-less or parameter-free. An algorithm with many parameters may be good in terms of being flexible with solving different questions. However, tuning the parameter usually requires expert knowledge, which is not user-friendly. A less experienced practitioner may end up choosing the wrong parameter, which will significantly affect the performance of the algorithm. Therefore, an algorithm with parameters should be equipped with the guidance of parameter selection. Thirdly, an algorithm should be computationally feasible. Otherwise, one cannot even use such an algorithm. However, feasible computation is just the basic requirement. A faster algorithm even with just a slightly worse performance is favorable. This paper mainly focuses on the computation aspect and the proposed algorithm not only faster but also has a good performance in solving the problem. Finally, it is favorable if the algorithm is sample efficient.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子醉鳖,更是在濱河造成了極大的恐慌蝇闭,老刑警劉巖笼恰,帶你破解...
    沈念sama閱讀 211,042評(píng)論 6 490
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件涡驮,死亡現(xiàn)場(chǎng)離奇詭異儿奶,居然都是意外死亡沾凄,警方通過(guò)查閱死者的電腦和手機(jī)梗醇,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 89,996評(píng)論 2 384
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)撒蟀,“玉大人叙谨,你說(shuō)我怎么就攤上這事”M停” “怎么了手负?”我有些...
    開(kāi)封第一講書(shū)人閱讀 156,674評(píng)論 0 345
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)姑尺。 經(jīng)常有香客問(wèn)我竟终,道長(zhǎng),這世上最難降的妖魔是什么切蟋? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 56,340評(píng)論 1 283
  • 正文 為了忘掉前任统捶,我火速辦了婚禮,結(jié)果婚禮上柄粹,老公的妹妹穿的比我還像新娘喘鸟。我一直安慰自己,他們只是感情好驻右,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,404評(píng)論 5 384
  • 文/花漫 我一把揭開(kāi)白布什黑。 她就那樣靜靜地躺著,像睡著了一般堪夭。 火紅的嫁衣襯著肌膚如雪愕把。 梳的紋絲不亂的頭發(fā)上拣凹,一...
    開(kāi)封第一講書(shū)人閱讀 49,749評(píng)論 1 289
  • 那天,我揣著相機(jī)與錄音恨豁,去河邊找鬼嚣镜。 笑死,一個(gè)胖子當(dāng)著我的面吹牛圣絮,可吹牛的內(nèi)容都是我干的祈惶。 我是一名探鬼主播,決...
    沈念sama閱讀 38,902評(píng)論 3 405
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼扮匠,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼捧请!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起棒搜,我...
    開(kāi)封第一講書(shū)人閱讀 37,662評(píng)論 0 266
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤疹蛉,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后力麸,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體可款,經(jīng)...
    沈念sama閱讀 44,110評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,451評(píng)論 2 325
  • 正文 我和宋清朗相戀三年克蚂,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了闺鲸。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 38,577評(píng)論 1 340
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡埃叭,死狀恐怖摸恍,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情赤屋,我是刑警寧澤立镶,帶...
    沈念sama閱讀 34,258評(píng)論 4 328
  • 正文 年R本政府宣布,位于F島的核電站类早,受9級(jí)特大地震影響媚媒,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜涩僻,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,848評(píng)論 3 312
  • 文/蒙蒙 一缭召、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧逆日,春花似錦恼琼、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,726評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)蛙卤。三九已至狠半,卻和暖如春噩死,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背神年。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,952評(píng)論 1 264
  • 我被黑心中介騙來(lái)泰國(guó)打工已维, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人已日。 一個(gè)月前我還...
    沈念sama閱讀 46,271評(píng)論 2 360
  • 正文 我出身青樓垛耳,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親飘千。 傳聞我的和親對(duì)象是個(gè)殘疾皇子堂鲜,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,452評(píng)論 2 348

推薦閱讀更多精彩內(nèi)容