Block的本質(zhì)
Block 對(duì)象是c語(yǔ)言的語(yǔ)法和運(yùn)行時(shí)結(jié)構(gòu)波附。很像c函數(shù)柏靶,但是執(zhí)行代碼的時(shí)會(huì)使用棧區(qū)和堆區(qū)的變量。因此想罕,一個(gè)block執(zhí)行的時(shí)候,它所維持的這些狀態(tài)和數(shù)據(jù)會(huì)影響它的行為霉涨。雖然block是C語(yǔ)言語(yǔ)法弧呐,并且能在c和C++中使用,但是他一個(gè)OC對(duì)象:
來(lái)自官方文檔.jpeg
它的底層結(jié)構(gòu)是一個(gè)結(jié)構(gòu)體嵌纲,結(jié)構(gòu)體中的函數(shù)指針指向block的函數(shù)實(shí)現(xiàn)斤葱,block()調(diào)用的就是這個(gè)函數(shù)准谚。
Block的類型
跟普通對(duì)象一樣,Block也有isa指針指向相應(yīng)的類型重慢。Block有三個(gè)類型(NSGlobalBlock今阳,NSMallocBlock师溅,NSStackBlock)茅信。
全局Block(NSGlobalBlock)
Block在不引用外部變量或只引用全局變量或者靜態(tài)變量就是全局Block。代碼示例:
//不引用任何變量
void (^block1)(void) = ^{
};
NSLog(@"block1:%@",block1);
//引用靜態(tài)變量
static int c = 0;
void (^block2)(void) = ^{
c = 1;
};
NSLog(@"block2:%@",block2);
打印結(jié)果:
2021-07-21 17:23:53.944309+0800 001---BlockDemo[32880:11497834] block1:<NSGlobalBlock: 0x10c92a0a0>
2021-07-21 17:23:53.944616+0800 001---BlockDemo[32880:11497834] block2:<NSGlobalBlock: 0x10c92a0c0>
堆Block(NSMallocBlock)
引用了局部變量墓臭,發(fā)生copy操作之后就變成堆block蘸鲸。代碼示例:
//引用局部變量a
int a = 0;
//這里默認(rèn)是強(qiáng)引用,發(fā)生了copy操作
void (^block3)(void) = ^{
NSLog(@"a:%@",@(a));
};
NSLog(@"block3:%@",block3);
打印結(jié)果:
2021-07-21 17:32:21.386941+0800 001---BlockDemo[32934:11503105] block3:<NSMallocBlock: 0x600002227cf0>
棧Block(NSStackBlock)
引用了局部變量窿锉,未發(fā)生copy操作酌摇。代碼示例:
//引用局部變量a
int a = 0;
//這里__weak是弱引用,未發(fā)生了copy操作
void (^__weak block4)(void) = ^{
NSLog(@"a:%@",@(a));
};
NSLog(@"block4:%@",block4);
打印結(jié)果:
2021-07-21 17:35:39.843363+0800 001---BlockDemo[32992:11509042] block4:<NSStackBlock: 0x7ffee2080488>
Block的底層結(jié)構(gòu)-Block layout
Block_layout是block結(jié)構(gòu)體的底層結(jié)構(gòu)嗡载,其源碼如下:
struct Block_layout {
void *isa; //
volatile int32_t flags; // contains ref count
int32_t reserved;
BlockInvokeFunction invoke;// block()通過(guò)它調(diào)用函數(shù)
struct Block_descriptor_1 *descriptor; //
// imported variables
};
- isa 指針指向Block的類型窑多;
- invoke 是Block函數(shù),Block調(diào)用實(shí)際上就是調(diào)用的invoke
- flags 是個(gè)標(biāo)記位洼滚,用于標(biāo)記Block的類型埂息、狀態(tài)等
//flags注釋
// Values for Block_layout->flags to describe block objects
//enum {
// BLOCK_DEALLOCATING = (0x0001), // runtime
// BLOCK_REFCOUNT_MASK = (0xfffe), // runtime
// BLOCK_NEEDS_FREE = (1 << 24), // runtime
// BLOCK_HAS_COPY_DISPOSE = (1 << 25), // compiler
// BLOCK_HAS_CTOR = (1 << 26), // compiler: helpers have C++ code
// BLOCK_IS_GC = (1 << 27), // runtime
// BLOCK_IS_GLOBAL = (1 << 28), // compiler
// BLOCK_USE_STRET = (1 << 29), // compiler: undefined if !BLOCK_HAS_SIGNATURE
// BLOCK_HAS_SIGNATURE = (1 << 30), // compiler
// BLOCK_HAS_EXTENDED_LAYOUT=(1 << 31) // compiler
//};
- descriptor是可變屬性,而且是遞增的遥巴。默認(rèn)的是:
#define BLOCK_DESCRIPTOR_1 1
struct Block_descriptor_1 {
uintptr_t reserved;
uintptr_t size;
};
當(dāng)block引用對(duì)象時(shí)千康,就會(huì)新增如下結(jié)構(gòu):
#define BLOCK_DESCRIPTOR_2 1
struct Block_descriptor_2 {
// requires BLOCK_HAS_COPY_DISPOSE
BlockCopyFunction copy;
BlockDisposeFunction dispose;
};
BlockCopyFunction copy用于保存對(duì)象的copy函數(shù),因?yàn)槿绻鸼lock引用對(duì)象铲掐,當(dāng)Block發(fā)生copy時(shí)拾弃,引用的對(duì)象也要copy(Block copy時(shí)有解析)。此時(shí)的descriptor相當(dāng)于:
struct Block_descriptor {
uintptr_t reserved;
uintptr_t size;
BlockCopyFunction copy;
BlockDisposeFunction dispose;
};
//依據(jù)是編譯成C++代碼時(shí)增加了:
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
當(dāng)block有簽名時(shí)迹炼,增加Block_descriptor_3:
#define BLOCK_DESCRIPTOR_3 1
struct Block_descriptor_3 {
// requires BLOCK_HAS_SIGNATURE
const char *signature;
const char *layout; // contents depend on BLOCK_HAS_EXTENDED_LAYOUT
};
Block捕獲外部變量
普通變量的捕獲
Block捕獲外部普通變量(不是__block等修飾的變量)會(huì)自動(dòng)生成一個(gè)屬性來(lái)保存砸彬。接下來(lái)我們通過(guò)將main.c文件編譯成main.cpp文件查看底層c++代碼進(jìn)行驗(yàn)證。首先在main函數(shù)實(shí)現(xiàn)如下block代碼:
#import <UIKit/UIKit.h>
int main(int argc, char * argv[]) {
int a = 11;
void (^block)(void) = ^(void){
NSLog(@"%@",@(a));
};
block();
}
通過(guò)命令xcrun -sdk iphonesimulator clang -arch x86_64 -rewrite-objc main.m 編譯成main.cpp文件斯入,打開(kāi)砂碉,找到main函數(shù)對(duì)應(yīng)的c++代碼,如下:
int main(int argc, char * argv[]) {
int a = 11;
//這一行是block的創(chuàng)建
void (*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, a));
//這一行是block調(diào)用
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
//為了便于分析刻两,把類型轉(zhuǎn)換符號(hào)去掉增蹭,可以簡(jiǎn)化成:
void (*block)(void) = __main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA, a);
//這一行是block調(diào)用,可以看到block調(diào)用的時(shí)候他會(huì)把自身作為參數(shù)再次傳到函數(shù)里面磅摹,這一步的用處在后面的__main_block_func_0會(huì)講解
block->FuncPtr(block);
}
-
__main_block_impl_0結(jié)構(gòu)體分析
__main_block_impl_0
是Block編譯時(shí)自動(dòng)生成的結(jié)構(gòu)體滋迈,Block的創(chuàng)建實(shí)際上就是這個(gè)結(jié)構(gòu)調(diào)用了構(gòu)造函數(shù)創(chuàng)建的,其結(jié)構(gòu)體代碼如下:
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int a; //自動(dòng)生成a屬性來(lái)保存捕獲的變量a
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, int flags=0) : a(_a) {// 構(gòu)造函數(shù)
impl.isa = &_NSConcreteStackBlock;//isa指針
impl.Flags = flags;//
impl.FuncPtr = fp;//fp函數(shù)作為參數(shù)傳入户誓,保存在FuncPtr指針饼灿,這樣block()才能調(diào)用函數(shù)
Desc = desc;
}
};
在這里可以看到__block_impl
的構(gòu)造函數(shù)跟我們前面的Block_layout
結(jié)構(gòu)體是對(duì)應(yīng)關(guān)系:
isa 對(duì)應(yīng) isa
Flags 對(duì)應(yīng)falgs
FuncPtr 對(duì)應(yīng) invoke
Desc 對(duì)應(yīng) descriptor
-
為捕獲的變量自動(dòng)生成屬性以及descriptor的確定
__main_block_impl_0
在__block_impl
的基礎(chǔ)上增加了屬性int a用于捕獲的外部變量a;同時(shí)還增加可變屬性__main_block_desc_0* Desc
帝美,這個(gè)Desc的可變?cè)趺大w現(xiàn)呢碍彭?比如上面的demo把a(bǔ)是一個(gè)值類型(int),它對(duì)應(yīng)的__main_block_desc_0
的結(jié)構(gòu)如下:
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
但是如果把a(bǔ)換成對(duì)象類型,比如:
NSObject *obj = [[NSObject alloc] init];
void (^block1)(void) = ^{
NSLog(@"%@",obj);
};
block1();
這時(shí)候編譯的到的_main_block_desc_0
變成:
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
這與我們前面對(duì)Block_layout
的分析是一致的庇忌,它增加了copy
和dispose
方法舞箍。因?yàn)閷?duì)象類型需要這兩個(gè)方法而值類型不需要。
-
被捕獲的外部變量的訪問(wèn)
__main_block_func_0
就是block()調(diào)用的函數(shù)的實(shí)現(xiàn)皆疹。我們創(chuàng)建Block的時(shí)候并沒(méi)有傳入函數(shù)名稱疏橄,但是Block卻自動(dòng)生成一個(gè)函數(shù)實(shí)現(xiàn),這也是block被稱為匿名函數(shù)的由來(lái)略就。__main_block_func_0
它的實(shí)現(xiàn)代碼:
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
//函數(shù)內(nèi)又會(huì)自定義一個(gè)臨時(shí)變量copy了block結(jié)構(gòu)體中cself->a的值
int a = __cself->a; // // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_kz_91163dcd57j_zw_xyry904bc0000gn_T_main_c2c542_mi_0,((NSNumber *(*)(Class, SEL, int))(void *)objc_msgSend)(objc_getClass("NSNumber"), sel_registerName("numberWithInt:"), (int)(a)));
}
通過(guò)源碼我們發(fā)現(xiàn)__main_block_func_0
的參數(shù)實(shí)際上是Block結(jié)構(gòu)體本身捎迫,這樣也就解釋了為什么我們能在Block代碼塊里面訪問(wèn)其結(jié)構(gòu)體__main_block_impl_0
中的屬性了,比如這里的int a屬性残制,這里面的a實(shí)際上已經(jīng)不是block外面的變量a立砸,而是__main_block_func_0
自定義的臨時(shí)變量用于接收Block結(jié)構(gòu)體屬性a。這同時(shí)也解釋了為什么在Block里面無(wú)法對(duì)a進(jìn)行修改初茶。
那為什么__block修飾的變量可以被修改呢颗祝?它是如何被捕獲的?加下來(lái)我們看看__block修飾的變量的捕獲恼布。
__block變量的捕獲
用__block對(duì)int a進(jìn)行修飾螺戳,同時(shí)在block內(nèi)對(duì)a++操作,研究一下__block的實(shí)現(xiàn)原理及a為何能被修改折汞。代碼如下:
__block int a = 11;
void (^block)(void) = ^(void){
a++;
NSLog(@"%@",@(a));
};
block();
重復(fù)上面的編譯步驟倔幼,得到編譯后main函數(shù)的c++代碼如下:
int main(int argc, char * argv[]) {
__attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 0, sizeof(__Block_byref_a_0), 11};
void (*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344));
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
}
為方便閱讀,簡(jiǎn)化成如下代碼:
int main(int argc, char * argv[]) {
__Block_byref_a_0 a = {
(void*)0,
(__Block_byref_a_0 *)&a,
0,
sizeof(__Block_byref_a_0),
11
};
void (*block)(void) = __main_block_impl_0(
_main_block_func_0,
&__main_block_desc_0_DATA,
(__Block_byref_a_0 *)&a,
570425344
);
block->FuncPtr(block);
}
-
__main_block_impl_0結(jié)構(gòu)體分析
此時(shí)的Block的結(jié)構(gòu)體__main_block_impl_0 代碼如下:
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__Block_byref_a_0 *a; // by ref
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
此時(shí)的__main_block_impl_0
和捕獲普通對(duì)象時(shí)的結(jié)構(gòu)基本是一樣的爽待,唯一不同在于對(duì)外部變量的捕獲损同。
-
自動(dòng)生成一個(gè)結(jié)構(gòu)體屬性用于接收外部__block變量
通過(guò)上面的代碼可以看出這段代碼比前面的多了一個(gè)結(jié)構(gòu)體__Block_byref_a_0,這個(gè)結(jié)構(gòu)體實(shí)際上Block用來(lái)捕獲__block int a 變量的鸟款,其結(jié)構(gòu)體源碼如下:
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;// 保存變量a的指針
int __flags;
int __size;
int a;// 保存變量a的值
};
-
為什么__block 變量可以在Block里面修改
由代碼可以看出Block不僅捕獲__block int a 變量的值膏燃,還捕獲了a的指針,通過(guò)__Block_byref_a_0結(jié)構(gòu)體分別保存在屬性int a 和 __Block_byref_a_0 *__forwarding中何什, 保存原始變量 指針 - 值组哩,拿到變量a的地址,所以可以通過(guò)指針進(jìn)行修改处渣。 -
__block變量在Block函數(shù)中如何訪問(wèn)伶贰?
此時(shí)__main_block_func_0函數(shù)實(shí)現(xiàn)也變成如下?tīng)顟B(tài):
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
__Block_byref_a_0 *a = __cself->a; // bound by ref,這里是指針拷貝
(a->__forwarding->a)++; //通過(guò)__forwarding指針訪問(wèn)a變量并可以修改
NSLog((NSString *)&__NSConstantStringImpl__var_folders_kz_91163dcd57j_zw_xyry904bc0000gn_T_main_2b95a8_mi_0,((NSNumber *(*)(Class, SEL, int))(void *)objc_msgSend)(objc_getClass("NSNumber"), sel_registerName("numberWithInt:"), (int)((a->__forwarding->a))));
}
可以看到__main_block_func_0函數(shù)里面變量a的指針進(jìn)行了拷貝罐栈,并且通過(guò)a->__forwarding->a訪問(wèn)變量a并進(jìn)行修改黍衙,這樣Block內(nèi)部和外部指向同一個(gè)地址,所以可以修改外部變量荠诬。
Block的copy原理解析
什么時(shí)候進(jìn)行Copy琅翻?
通過(guò)匯編調(diào)試可以找到Block進(jìn)行copy的地方 涯捻。以下通過(guò)以下兩步匯編斷點(diǎn)調(diào)試,跳到_Block_copy的代碼實(shí)現(xiàn):
NSObject *obj = [[NSObject alloc] init];
void (^block1)(void) = ^{
// NSLog(@"a:%@",@(a));
NSLog(@"%@",obj);
};
block1();
Block斷點(diǎn)調(diào)試.jpg
block源碼.jpg
根據(jù)提示可以看出Block源碼出自libsystem_blocks.dylib動(dòng)態(tài)庫(kù)望迎,Block的copy操作是在_Block_copy函數(shù)中完成的。
NSStackBlock變成NSMallocBlock過(guò)程演示
棧Block進(jìn)行copy操作之后就變成堆Block的凌外。接下來(lái)我們通過(guò)匯編調(diào)試驗(yàn)證這一過(guò)程辩尊。通過(guò)在_Block_copy調(diào)用前和調(diào)用結(jié)束打斷點(diǎn)分析block類型變化來(lái)演示:
BlockDemo.jpg
運(yùn)行到斷點(diǎn)位置,然后進(jìn)入?yún)R編調(diào)試康辑,然后添加符號(hào)objc_retainBlock斷點(diǎn)摄欲,繼續(xù)運(yùn)行:
符號(hào)斷點(diǎn).png
Copy前.jpg
這一步就可以看到已經(jīng)準(zhǔn)備調(diào)用_Block_copy函數(shù)了,在這之前打印Block發(fā)現(xiàn)是__NSStackBlock類型疮薇。接下來(lái)繼續(xù)運(yùn)行一步步跳入到_Block_copy實(shí)現(xiàn)胸墙,并在_Block_copy結(jié)束并準(zhǔn)備返回(ret)前打斷點(diǎn),如下:
block源碼.jpg
_Block_copy結(jié)束.png
這回可以看到Block已經(jīng)變成了__NSMallocBlock按咒。
_Block_copy源碼解析
由上面的調(diào)試可知迟隅,Block的copy發(fā)生在_Block_copy函數(shù)中,接下來(lái)通過(guò)源碼查看_Block_copy的流程:
void *_Block_copy(const void *arg) {
struct Block_layout *aBlock;
if (!arg) return NULL;
// The following would be better done as a switch statement
aBlock = (struct Block_layout *)arg;
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
latching_incr_int(&aBlock->flags);
return aBlock;
}
else if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock; //如果是全局Block励七,則不需要copy智袭,直接返回
}
else { // 如果是棧Block,則會(huì)申請(qǐng)一個(gè)堆空間創(chuàng)建一個(gè)新的Block,并將所有屬性值拷貝一份
// Its a stack block. Make a copy.
struct Block_layout *result =
(struct Block_layout *)malloc(aBlock->descriptor->size);
if (!result) return NULL;
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
#if __has_feature(ptrauth_calls)
// Resign the invoke pointer as it uses address authentication.
result->invoke = aBlock->invoke;
#endif
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING); // XXX not needed
result->flags |= BLOCK_NEEDS_FREE | 2; // logical refcount 1
_Block_call_copy_helper(result, aBlock);
// Set isa last so memory analysis tools see a fully-initialized object.
//最后把block的類型改為堆Block
result->isa = _NSConcreteMallocBlock;
return result;
}
}
有源碼可知掠抬,_Block_copy主要做了如下幾件事情:
- 1吼野、判斷如果是重復(fù)copy,則直接返回:
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
latching_incr_int(&aBlock->flags);
return aBlock;
}
當(dāng)?shù)谝淮蝐opy之后BLOCK_NEEDS_FREE會(huì)被標(biāo)記两波。下次在對(duì)同一個(gè)block進(jìn)行copy時(shí)直接返回瞳步。
- 2、判斷如果是全局Block則直接返回:
if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock; //如果是全局Block腰奋,則不需要copy单起,直接返回
}
全局Block是不需要copy的。
- 3氛堕、開(kāi)辟堆空間馏臭,copy棧block到堆區(qū)
struct Block_layout *result =
(struct Block_layout *)malloc(aBlock->descriptor->size);
if (!result) return NULL;
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
#if __has_feature(ptrauth_calls)
// Resign the invoke pointer as it uses address authentication.
result->invoke = aBlock->invoke;
#endif
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING); // XXX not needed
result->flags |= BLOCK_NEEDS_FREE | 2; // logical refcount 1
_Block_call_copy_helper(result, aBlock);
// Set isa last so memory analysis tools see a fully-initialized object.
//最后把block的類型改為堆Block
result->isa = _NSConcreteMallocBlock;
return result;
設(shè)置invoke:aBlock->invoke
更新Block的狀態(tài):flags
如果引用對(duì)象類型,copy對(duì)象:_Block_call_copy_helper(后面有專門對(duì)象copy的分析)
isa指針指向堆類型:result->isa = _NSConcreteMallocBlock
對(duì)象的Copy操作
對(duì)象的Copy是通過(guò)函數(shù)_Block_object_assign完成的讼稚。其源碼如下:
void _Block_object_assign(void *destArg, const void *object, const int flags) {
const void **dest = (const void **)destArg;
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_OBJECT:
/*******
id object = ...;
[^{ object; } copy];
********/
// objc 指針地址 weakSelf (self)
_Block_retain_object(object);
// 持有
*dest = object;
break;
case BLOCK_FIELD_IS_BLOCK:
/*******
void (^object)(void) = ...;
[^{ object; } copy];
********/
// block 被一個(gè) block 捕獲
*dest = _Block_copy(object);
break;
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
/*******
// copy the onstack __block container to the heap
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__block ... x;
__weak __block ... x;
[^{ x; } copy];
********/
*dest = _Block_byref_copy(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
/*******
// copy the actual field held in the __block container
// Note this is MRC unretained __block only.
// ARC retained __block is handled by the copy helper directly.
__block id object;
__block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
/*******
// copy the actual field held in the __block container
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__weak __block id object;
__weak __block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
default:
break;
}
}
對(duì)象類型
對(duì)象類型有以下幾種:
enum {
// see function implementation for a more complete description of these fields and combinations
BLOCK_FIELD_IS_OBJECT = 3, // id, NSObject, __attribute__((NSObject)), block, ...
BLOCK_FIELD_IS_BLOCK = 7, // a block variable
BLOCK_FIELD_IS_BYREF = 8, // the on stack structure holding the __block variable
BLOCK_FIELD_IS_WEAK = 16, // declared __weak, only used in byref copy helpers
BLOCK_BYREF_CALLER = 128, // called from __block (byref) copy/dispose support routines.
};
普通對(duì)象copy
普通的對(duì)象(不加任何修飾比如__weak, 或者_(dá)_block)的copy會(huì)被Block持有的同時(shí)還被Block進(jìn)行retain使得引用計(jì)數(shù)增加:
case BLOCK_FIELD_IS_OBJECT:
/*******
id object = ...;
[^{ object; } copy];
********/
// objc 指針地址 weakSelf (self)
// arc
_Block_retain_object(object);
// 持有
*dest = object;
引用的對(duì)象本身是個(gè)Block
Block也有可能捕獲其他的block括儒,對(duì)于Block類型對(duì)象,直接調(diào)用_Block_copy(前面已有分析):
case BLOCK_FIELD_IS_BLOCK:
/*******
void (^object)(void) = ...;
[^{ object; } copy];
********/
// block 被一個(gè) block 捕獲
*dest = _Block_copy(object);
break;
__block變量的Copy
__block對(duì)象跟普通對(duì)象不一樣锐想,在block里面它是一個(gè)結(jié)構(gòu)體帮寻,它的copy實(shí)現(xiàn)是在函數(shù)_Block_byref_copy中實(shí)現(xiàn)的:
static struct Block_byref *_Block_byref_copy(const void *arg) {
// Block_byref 結(jié)構(gòu)體
struct Block_byref *src = (struct Block_byref *)arg;
if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// src points to stack
struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
copy->isa = NULL;
// byref value 4 is logical refcount of 2: one for caller, one for stack
copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
copy->forwarding = copy; // patch heap copy to point to itself
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
copy2->byref_keep = src2->byref_keep;
copy2->byref_destroy = src2->byref_destroy;
if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
copy3->layout = src3->layout;
}
(*src2->byref_keep)(copy, src);
}
else {
// Bitwise copy.
// This copy includes Block_byref_3, if any.
memmove(copy+1, src+1, src->size - sizeof(*src));
}
}
// already copied to heap
else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
return src->forwarding;
}
Copy出來(lái)的forwarding和原來(lái)的forwarding指向同一個(gè),保證了block內(nèi)部持有的變量和外部的__block變量是同一個(gè):
copy->forwarding = copy; // patch heap copy to point to itself
src->forwarding = copy; // patch stack to point to heap copy
但是__block修飾的變量又可分為值變量類型(比如int類型等)和對(duì)象類型赠摇。對(duì)于對(duì)象類型固逗,會(huì)調(diào)用對(duì)象的copy方法:
if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
copy2->byref_keep = src2->byref_keep;
copy2->byref_destroy = src2->byref_destroy;
if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
copy3->layout = src3->layout;
}
(*src2->byref_keep)(copy, src);
}
對(duì)于值變量類型浅蚪,有:
else {
// Bitwise copy.
// This copy includes Block_byref_3, if any.
memmove(copy+1, src+1, src->size - sizeof(*src));
}
其他對(duì)象的copy
其他對(duì)象沒(méi)有copy,只是簡(jiǎn)單的指針賦值操作烫罩。
Block調(diào)用情況
Block是如何調(diào)用并執(zhí)行里面的代碼的呢惜傲?通過(guò)匯編斷點(diǎn)繼續(xù)調(diào)試:
block_invoke.jpg
block_invoke實(shí)現(xiàn).jpeg
實(shí)際上是在底層調(diào)用了Block_layout的invoke實(shí)現(xiàn)的。