SVIM 可基于long reads(pacbio, ONT,HIFI)進行call SV,deletion, insertion, inversion, tandem duplications, interspersed duplication and translocations.
githup:https://github.com/eldariont/svim
文章:SVIM: structural variant identification using mapped long reads
1、安裝
conda create -n svim_env --channel bioconda svim
2、簡單操練
所需數(shù)據(jù):
- long reads FASTA/FASTQ (壓縮或uncompressed均可)
- or long reads比對得到的bam文件, 需要
在進行l(wèi)ong reads比對的時候,可以選擇 NGMLR
或者minimap2均可以甩苛。
SVIM主要包括4個步驟:
- collect: 基于Long reads 檢測SV
- cluster:相同的SV進行合并
- combine:來自不同基因組區(qū)域的cluster進行合并
- genotype:確定基因型
svim alignment my_sample my_alignments.bam my_genome.fa
輸出文件:
- The log file: SVIM_{date}_{time}.log
- The SV calls in VCF format: variants.vcf
- The SV calls in BED format: candidates/candidates_*.bed
- Intermediate signature clusters in BED format: signatures/*.bed
當然也可以進行適當?shù)倪^濾蹂楣,比如
## score > 10
bcftools view -i 'QUAL >= 10' variants.vcf'.