Machine Learning - Week 1

Week 1

主要記住的知識(shí)點(diǎn):

1.Regression & Classification

? ?1.回歸問(wèn)題的應(yīng)用場(chǎng)景

回歸問(wèn)題通常是用來(lái)預(yù)測(cè)一個(gè)值,如預(yù)測(cè)房?jī)r(jià)驼唱、未來(lái)的天氣情況等等蔗彤,例如一個(gè)產(chǎn)品的實(shí)際價(jià)格為500元,通過(guò)回歸分析預(yù)測(cè)值為499元,我們認(rèn)為這是一個(gè)比較好的回歸分析蝇更。一個(gè)比較常見(jiàn)的回歸算法是線性回歸算法(LR)。另外呼盆,回歸分析用在神經(jīng)網(wǎng)絡(luò)上年扩,其最上層是不需要加上softmax函數(shù)的,而是直接對(duì)前一層累加即可访圃〕茫回歸是對(duì)真實(shí)值的一種逼近預(yù)測(cè)扇商。

? ?2.分類問(wèn)題的應(yīng)用場(chǎng)景

分類問(wèn)題是用于將事物打上一個(gè)標(biāo)簽居灯,通常結(jié)果為離散值。例如判斷一幅圖片上的動(dòng)物是一只貓還是一只狗恭垦,分類通常是建立在回歸之上圈匆,分類的最后一層通常要使用softmax函數(shù)進(jìn)行判斷其所屬類別漠另。分類并沒(méi)有逼近的概念,最終正確結(jié)果只有一個(gè)跃赚,錯(cuò)誤的就是錯(cuò)誤的笆搓,不會(huì)有相近的概念。最常見(jiàn)的分類方法是邏輯回歸纬傲,或者叫邏輯分類满败。

2.supervised learning & ?unsupervised learning

個(gè)人覺(jué)得最好分辨的是,監(jiān)督學(xué)習(xí)是確定了數(shù)據(jù)集中一定存在某種關(guān)系叹括,而另一種是去探究它們有沒(méi)有關(guān)系算墨。

3.Machine learning definition

第一周包含的話題有以下幾個(gè)

以下是week 1 的測(cè)試題目:

Quiz Introduction

1.

A computer program is said to learn from experience E with respect to some task T and some performance measure P if its performance on T, as measured by P, improves with experience E. Suppose we feed a learning algorithm a lot of historical weather data, and have it learn to predict weather. What would be a reasonable choice for P?

(x) The probability of it correctly predicting a future date's weather.

( ) The weather prediction task.

( ) The process of the algorithm examining a large amount of historical weather data.

( ) None of these.

2.

Suppose you are working on weather prediction, and your weather station makes one of three predictions for each day's weather: Sunny, Cloudy or Rainy. You'd like to use a learning algorithm to predict tomorrow's weather.

Would you treat this as a classification or a regression problem?

(x) Classification

( ) Regression

3.

Suppose you are working on stock market prediction, Typically tens of millions of shares of Microsoft stock are traded (i.e., bought/sold) each day. You would like to predict the number of Microsoft shares that will be traded tomorrow.

Would you treat this as a classification or a regression problem?

( ) Classification

(x) Regression

4.

Some of the problems below are best addressed using a supervised learning algorithm, and the others with an unsupervised learning algorithm. Which of the following would you apply supervised learning to? (Select all that apply.) In each case, assume some appropriate dataset is available for your algorithm to learn from.

[ ] Given data on how 1000 medical patients respond to an experimental drug (such as effectiveness of the treatment, side effects, etc.), discover whether there are different categories or "types" of patients in terms of how they respond to the drug, and if so what these categories are.

[x] Have a computer examine an audio clip of a piece of music, and classify whether or not there are vocals (i.e., a human voice singing) in that audio clip, or if it is a clip of only musical instruments (and no vocals).

[x] Given genetic (DNA) data from a person, predict the odds of him/her developing diabetes over the next 10 years.

[ ] Given a large dataset of medical records from patients suffering from heart disease, try to learn whether there might be different clusters of such patients for which we might tailor separate treatments.

5.

Which of these is a reasonable definition of machine learning?

( ) Machine learning is the field of allowing robots to act intelligently.

(x) Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed.

( ) Machine learning is the science of programming computers.

( ) Machine learning learns from labeled data.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市汁雷,隨后出現(xiàn)的幾起案子净嘀,更是在濱河造成了極大的恐慌,老刑警劉巖侠讯,帶你破解...
    沈念sama閱讀 216,997評(píng)論 6 502
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件挖藏,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡厢漩,警方通過(guò)查閱死者的電腦和手機(jī)膜眠,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,603評(píng)論 3 392
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人宵膨,你說(shuō)我怎么就攤上這事架谎。” “怎么了柄驻?”我有些...
    開(kāi)封第一講書人閱讀 163,359評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵狐树,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我鸿脓,道長(zhǎng)抑钟,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書人閱讀 58,309評(píng)論 1 292
  • 正文 為了忘掉前任野哭,我火速辦了婚禮在塔,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘拨黔。我一直安慰自己蛔溃,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,346評(píng)論 6 390
  • 文/花漫 我一把揭開(kāi)白布篱蝇。 她就那樣靜靜地躺著贺待,像睡著了一般。 火紅的嫁衣襯著肌膚如雪零截。 梳的紋絲不亂的頭發(fā)上麸塞,一...
    開(kāi)封第一講書人閱讀 51,258評(píng)論 1 300
  • 那天,我揣著相機(jī)與錄音涧衙,去河邊找鬼哪工。 笑死,一個(gè)胖子當(dāng)著我的面吹牛弧哎,可吹牛的內(nèi)容都是我干的雁比。 我是一名探鬼主播,決...
    沈念sama閱讀 40,122評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼撤嫩,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼偎捎!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起序攘,我...
    開(kāi)封第一講書人閱讀 38,970評(píng)論 0 275
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤鸭限,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后两踏,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,403評(píng)論 1 313
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡兜喻,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,596評(píng)論 3 334
  • 正文 我和宋清朗相戀三年梦染,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,769評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡帕识,死狀恐怖泛粹,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情肮疗,我是刑警寧澤晶姊,帶...
    沈念sama閱讀 35,464評(píng)論 5 344
  • 正文 年R本政府宣布,位于F島的核電站伪货,受9級(jí)特大地震影響们衙,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜碱呼,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,075評(píng)論 3 327
  • 文/蒙蒙 一蒙挑、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧愚臀,春花似錦忆蚀、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書人閱讀 31,705評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至舶斧,卻和暖如春欣鳖,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背捧毛。 一陣腳步聲響...
    開(kāi)封第一講書人閱讀 32,848評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工观堂, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人呀忧。 一個(gè)月前我還...
    沈念sama閱讀 47,831評(píng)論 2 370
  • 正文 我出身青樓师痕,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親而账。 傳聞我的和親對(duì)象是個(gè)殘疾皇子胰坟,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,678評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容

  • 臨近畢業(yè),我親愛(ài)的小乖和小公主們又開(kāi)始關(guān)心找工作相關(guān)的問(wèn)題了泞辐,看著你們嘰嘰喳喳求知欲旺盛的樣子笔横,好想扭頭就走呀!—...
    茜羽閱讀 596評(píng)論 2 9
  • 今天開(kāi)始家里來(lái)了個(gè)朋友咐吼,小巧玲瓏非炒档蓿可愛(ài),我們很歡迎他的到來(lái)锯茄,并會(huì)和睦相處厢塘。以此紀(jì)念茶没! 1、一剎那晚碾,看見(jiàn)兩個(gè)大面積...
    永遠(yuǎn)眼眶濕潤(rùn)閱讀 230評(píng)論 0 1
  • 雞澤縣的土地都論“方”抓半,都說(shuō)這方地、那方地格嘁,不同的地在過(guò)去都有不同的名字笛求。 比如,東六方村村南和西屯...
    椒鄉(xiāng)書生閱讀 1,816評(píng)論 0 2
  • 1 一別一輩子。這是張愛(ài)玲說(shuō)的冶伞。 可我們也是新症。 用很長(zhǎng)的時(shí)間等你出現(xiàn),用很短的時(shí)間愛(ài)上响禽。 用很慢的速度相守徒爹,用很快...
    安夏的花花世界閱讀 181評(píng)論 1 1