TensorFlow Object Detection API使用

谷歌開源的目標(biāo)檢測模型类嗤,選了個內(nèi)存占用小的ssd_mobilenet_v1_coco_2017_11_17模型戏罢,網(wǎng)絡(luò)下載鏈接:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

程序:


import os

import numpy as np

import tensorflow as tf

from PIL import Image

from matplotlib import pyplot as plt

import ops as utils_ops

import label_map_util

import visualization_utils as vis_util

# Path to frozen detection graph. This is the actual model that is used for the object detection.

PATH_TO_CKPT = 'frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = 'pascal_label_map.pbtxt'

NUM_CLASSES = 20

'''

if tf.__version__ < '1.4.0':

    raise ImportError(

        'Please upgrade your tensorflow installation to v1.4.* or later!')

'''

detection_graph = tf.Graph()

with detection_graph.as_default():

    od_graph_def = tf.GraphDef()

    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

        serialized_graph = fid.read()

        od_graph_def.ParseFromString(serialized_graph)

        tf.import_graph_def(od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)

categories = label_map_util.convert_label_map_to_categories(

    label_map, max_num_classes=NUM_CLASSES, use_display_name=True)

category_index = label_map_util.create_category_index(categories)

def load_image_into_numpy_array(image):

    (im_width, im_height) = image.size

    return np.array(image.getdata()).reshape(

        (im_height, im_width, 3)).astype(np.uint8)

# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.

PATH_TO_TEST_IMAGES_DIR = 'image\\'

TEST_IMAGE_PATHS = [os.path.join(

    PATH_TO_TEST_IMAGES_DIR, image) for image in os.listdir(PATH_TO_TEST_IMAGES_DIR)]

# Size, in inches, of the output images.

IMAGE_SIZE = (12, 8)

def run_inference_for_single_image(image, graph):

    with graph.as_default():

        with tf.Session() as sess:

            # Get handles to input and output tensors

            ops = tf.get_default_graph().get_operations()

            all_tensor_names = {output.name for op in ops for output in op.outputs}

            tensor_dict = {}

            for key in [

                'num_detections', 'detection_boxes', 'detection_scores',

                'detection_classes', 'detection_masks'

            ]:

                tensor_name = key + ':0'

                if tensor_name in all_tensor_names:

                    tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(

                        tensor_name)

            if 'detection_masks' in tensor_dict:

                # The following processing is only for single image

                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])

                detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])

                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.

                real_num_detection = tf.cast(

                    tensor_dict['num_detections'][0], tf.int32)

                detection_boxes = tf.slice(detection_boxes, [0, 0], [

                    real_num_detection, -1])

                detection_masks = tf.slice(detection_masks, [0, 0, 0], [

                    real_num_detection, -1, -1])

                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(

                    detection_masks, detection_boxes, image.shape[0], image.shape[1])

                detection_masks_reframed = tf.cast(

                    tf.greater(detection_masks_reframed, 0.5), tf.uint8)

                # Follow the convention by adding back the batch dimension

                tensor_dict['detection_masks'] = tf.expand_dims(

                    detection_masks_reframed, 0)

            image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

            # Run inference

            output_dict = sess.run(tensor_dict,

                                  feed_dict={image_tensor: np.expand_dims(image, 0)})

            # all outputs are float32 numpy arrays, so convert types as appropriate

            output_dict['num_detections'] = int(output_dict['num_detections'][0])

            output_dict['detection_classes'] = output_dict[

                'detection_classes'][0].astype(np.uint8)

            output_dict['detection_boxes'] = output_dict['detection_boxes'][0]

            output_dict['detection_scores'] = output_dict['detection_scores'][0]

            if 'detection_masks' in output_dict:

                output_dict['detection_masks'] = output_dict['detection_masks'][0]

    return output_dict

for image_path in TEST_IMAGE_PATHS:

    image = Image.open(image_path)

    # the array based representation of the image will be used later in order to prepare the

    # result image with boxes and labels on it.

    image_np = load_image_into_numpy_array(image)

    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]

    image_np_expanded = np.expand_dims(image_np, axis=0)

    # Actual detection.

    output_dict = run_inference_for_single_image(image_np, detection_graph)

    # Visualization of the results of a detection.

    vis_util.visualize_boxes_and_labels_on_image_array(

        image_np,

        output_dict['detection_boxes'],

        output_dict['detection_classes'],

        output_dict['detection_scores'],

        category_index,

        instance_masks=output_dict.get('detection_masks'),

        use_normalized_coordinates=True,

        line_thickness=8)

    plt.figure(figsize=IMAGE_SIZE)

    plt.imshow(image_np)

plt.show()

測試運行結(jié)果:
https://pan.baidu.com/s/1VTaMnAYrDY8rNrie_dsLQg

d1420180908_172237.gif

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市响蕴,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖铣墨,帶你破解...
    沈念sama閱讀 217,734評論 6 505
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異办绝,居然都是意外死亡伊约,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,931評論 3 394
  • 文/潘曉璐 我一進店門孕蝉,熙熙樓的掌柜王于貴愁眉苦臉地迎上來屡律,“玉大人,你說我怎么就攤上這事降淮〕瘢” “怎么了?”我有些...
    開封第一講書人閱讀 164,133評論 0 354
  • 文/不壞的土叔 我叫張陵佳鳖,是天一觀的道長霍殴。 經(jīng)常有香客問我,道長系吩,這世上最難降的妖魔是什么繁成? 我笑而不...
    開封第一講書人閱讀 58,532評論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮淑玫,結(jié)果婚禮上巾腕,老公的妹妹穿的比我還像新娘。我一直安慰自己絮蒿,他們只是感情好尊搬,可當(dāng)我...
    茶點故事閱讀 67,585評論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著土涝,像睡著了一般佛寿。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,462評論 1 302
  • 那天冀泻,我揣著相機與錄音常侣,去河邊找鬼。 笑死弹渔,一個胖子當(dāng)著我的面吹牛胳施,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播肢专,決...
    沈念sama閱讀 40,262評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼舞肆,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了博杖?” 一聲冷哼從身側(cè)響起椿胯,我...
    開封第一講書人閱讀 39,153評論 0 276
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎剃根,沒想到半個月后哩盲,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,587評論 1 314
  • 正文 獨居荒郊野嶺守林人離奇死亡狈醉,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,792評論 3 336
  • 正文 我和宋清朗相戀三年廉油,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片舔糖。...
    茶點故事閱讀 39,919評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡娱两,死狀恐怖莺匠,靈堂內(nèi)的尸體忽然破棺而出金吗,到底是詐尸還是另有隱情,我是刑警寧澤趣竣,帶...
    沈念sama閱讀 35,635評論 5 345
  • 正文 年R本政府宣布摇庙,位于F島的核電站,受9級特大地震影響遥缕,放射性物質(zhì)發(fā)生泄漏卫袒。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,237評論 3 329
  • 文/蒙蒙 一单匣、第九天 我趴在偏房一處隱蔽的房頂上張望夕凝。 院中可真熱鬧,春花似錦户秤、人聲如沸码秉。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,855評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽转砖。三九已至,卻和暖如春鲸伴,著一層夾襖步出監(jiān)牢的瞬間府蔗,已是汗流浹背晋控。 一陣腳步聲響...
    開封第一講書人閱讀 32,983評論 1 269
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留姓赤,地道東北人赡译。 一個月前我還...
    沈念sama閱讀 48,048評論 3 370
  • 正文 我出身青樓,卻偏偏與公主長得像模捂,于是被迫代替她去往敵國和親捶朵。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 44,864評論 2 354

推薦閱讀更多精彩內(nèi)容