Layer
是構(gòu)成Net
的基石瘤礁,如同Blob
是構(gòu)成Layer
的基石一樣,我們首先來看一下caffe.proto
中定義的LayerParameter
到底是怎么一回事:
message LayerParameter {
optional string name = 1; // the layer name
optional string type = 2; // the layer type
repeated string bottom = 3; // the name of each bottom blob
repeated string top = 4; // the name of each top blob
// The train / test phase for computation.
optional Phase phase = 10;
// The amount of weight to assign each top blob in the objective.
// Each layer assigns a default value, usually of either 0 or 1,
// to each top blob.
repeated float loss_weight = 5;
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
repeated ParamSpec param = 6;
// The blobs containing the numeric parameters of the layer.
repeated BlobProto blobs = 7;
// Specifies whether to backpropagate to each bottom. If unspecified,
// Caffe will automatically infer whether each input needs backpropagation
// to compute parameter gradients. If set to true for some inputs,
// backpropagation to those inputs is forced; if set false for some inputs,
// backpropagation to those inputs is skipped.
//
// The size must be either 0 or equal to the number of bottoms.
repeated bool propagate_down = 11;
// Rules controlling whether and when a layer is included in the network,
// based on the current NetState. You may specify a non-zero number of rules
// to include OR exclude, but not both. If no include or exclude rules are
// specified, the layer is always included. If the current NetState meets
// ANY (i.e., one or more) of the specified rules, the layer is
// included/excluded.
repeated NetStateRule include = 8;
repeated NetStateRule exclude = 9;
// Parameters for data pre-processing.
optional TransformationParameter transform_param = 100;
// Parameters shared by loss layers.
optional LossParameter loss_param = 101;
// Layer type-specific parameters.
//
// Note: certain layers may have more than one computational engine
// for their implementation. These layers include an Engine type and
// engine parameter for selecting the implementation.
// The default for the engine is set by the ENGINE switch at compile-time.
optional AccuracyParameter accuracy_param = 102;
optional ArgMaxParameter argmax_param = 103;
optional BatchNormParameter batch_norm_param = 139;
......
}
其中這個phase
當(dāng)然是控制它在TEST
和TRAIN
模式下層不同的表現(xiàn)的參數(shù)坎背,在某種狀態(tài)下可能要將其排除掉;loss_weight
是用來控制top blob
在整個loss
的計算中所占的權(quán)重的寄雀,一般情況下對于loss
層設(shè)置為1得滤,其他層設(shè)為0即可;ParamSpec param
定制一個訓(xùn)練參數(shù)盒犹,它是在全局化訓(xùn)練參數(shù)的基礎(chǔ)上再乘以一個乘子懂更,我們看下這個類的具體情況:
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
message ParamSpec {
// The names of the parameter blobs -- useful for sharing parameters among
// layers, but never required otherwise. To share a parameter between two
// layers, give it a (non-empty) name.
optional string name = 1;
// Whether to require shared weights to have the same shape, or just the same
// count -- defaults to STRICT if unspecified.
optional DimCheckMode share_mode = 2;
enum DimCheckMode {
// STRICT (default) requires that num, channels, height, width each match.
STRICT = 0;
// PERMISSIVE requires only the count (num*channels*height*width) to match.
PERMISSIVE = 1;
}
// The multiplier on the global learning rate for this parameter.
optional float lr_mult = 3 [default = 1.0];
// The multiplier on the global weight decay for this parameter.
optional float decay_mult = 4 [default = 1.0];
}
其實這個類中的東西就這幾個參數(shù),學(xué)習(xí)速率乘子
急膀,全局衰減乘子
還有就是如果想要共享這個blob
的參數(shù)沮协,需要給它定義一個名字
。那么回到之前的LayerParameter
中的定義卓嫂,可以發(fā)現(xiàn)repeated BlobProto blobs
就是我們這個層的參數(shù)blob
皂股,比如在普通的CNN
網(wǎng)絡(luò)中,它可能包含了weight blob
和bias blob
兩個命黔,其他的網(wǎng)絡(luò)可能包含了更多,這是由網(wǎng)絡(luò)的結(jié)構(gòu)決定的就斤。propagate_down
這個參數(shù)呢就是限制是否我們要往down blob
傳遞梯度的一個bool
數(shù)組悍募,它要么全是0
,要么它的大小要同down blob
的數(shù)量一致洋机。還有兩個參數(shù)要控制這個層是包含在Net
內(nèi)還是不包含坠宴,它決定于當(dāng)前的NetState
,我們來看NetState
和NetStateRule
這兩個類到底包含了哪些東西:
message NetState {
optional Phase phase = 1 [default = TEST];
optional int32 level = 2 [default = 0];
repeated string stage = 3;
}
message NetStateRule {
// Set phase to require the NetState have a particular phase (TRAIN or TEST)
// to meet this rule.
optional Phase phase = 1;
// Set the minimum and/or maximum levels in which the layer should be used.
// Leave undefined to meet the rule regardless of level.
optional int32 min_level = 2;
optional int32 max_level = 3;
// Customizable sets of stages to include or exclude.
// The net must have ALL of the specified stages and NONE of the specified
// "not_stage"s to meet the rule.
// (Use multiple NetStateRules to specify conjunctions of stages.)
repeated string stage = 4;
repeated string not_stage = 5;
}
這個里面寫得不是非常詳細(xì)绷旗,我們可以再后面再來慢慢分析喜鼓,不過你也可以推測出來副砍,這基本上是設(shè)置一些規(guī)則,到時候可以讓這個層到底是在這個Net
中還是不在里面庄岖。下面還有兩個主要的參數(shù)TransformationParameter
和LossParameter
我們后面再仔細(xì)分享豁翎,反正就這么幾個比較特別的參數(shù),然后就是各個層特有的參數(shù)了隅忿,這都是在proto
文件中用optional
關(guān)鍵詞限定的心剥。
到此為止,我們先來看看Layer.hpp
里面包含了什么東西吧:
#ifndef CAFFE_LAYER_H_
#define CAFFE_LAYER_H_
#include <algorithm>
#include <string>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer_factory.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/math_functions.hpp"
/**
Forward declare boost::thread instead of including boost/thread.hpp
to avoid a boost/NVCC issues (#1009, #1010) on OSX.
*/
namespace boost { class mutex; }
namespace caffe {
/**
* @brief An interface for the units of computation which can be composed into a
* Net.
*
* Layer%s must implement a Forward function, in which they take their input
* (bottom) Blob%s (if any) and compute their output Blob%s (if any).
* They may also implement a Backward function, in which they compute the error
* gradients with respect to their input Blob%s, given the error gradients with
* their output Blob%s.
*/
template <typename Dtype>
class Layer {
public:
/**
* You should not implement your own constructor. Any set up code should go
* to SetUp(), where the dimensions of the bottom blobs are provided to the
* layer.
*/
explicit Layer(const LayerParameter& param)
: layer_param_(param), is_shared_(false) {
// Set phase and copy blobs (if there are any).
phase_ = param.phase();
if (layer_param_.blobs_size() > 0) {
blobs_.resize(layer_param_.blobs_size());
for (int i = 0; i < layer_param_.blobs_size(); ++i) {
blobs_[i].reset(new Blob<Dtype>());
blobs_[i]->FromProto(layer_param_.blobs(i));
}
}
}
這個顯式的構(gòu)造函數(shù)直接將參數(shù)復(fù)制到layer_param_
這個保護成員中背桐,同時因為phase_
這個成員比較常用优烧,所以就單獨進行了賦值;另外呢最重要的是將blobs
中的參數(shù)呢全部復(fù)制到自己定義的Blob
對象中去了链峭,這樣就比較方便自己的操作畦娄,因為畢竟BlobProto
功能太弱了,在復(fù)制的過程中使用了Blob
對象帶的FromProto
方法弊仪,非常簡單明了熙卡。
virtual ~Layer() {}
/**
* @brief Implements common layer setup functionality.
*
* @param bottom the preshaped input blobs
* @param top
* the allocated but unshaped output blobs, to be shaped by Reshape
*
* Checks that the number of bottom and top blobs is correct.
* Calls LayerSetUp to do special layer setup for individual layer types,
* followed by Reshape to set up sizes of top blobs and internal buffers.
* Sets up the loss weight multiplier blobs for any non-zero loss weights.
* This method may not be overridden.
*/
void SetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
InitMutex();
CheckBlobCounts(bottom, top);
LayerSetUp(bottom, top);
Reshape(bottom, top);
SetLossWeights(top);
}
這個SetUp
函數(shù)呢是每一層的配置函數(shù),InitMutex
函數(shù)是在多任務(wù)的時候進行鎖定的撼短;CheckBlobCounts
是檢查各個blob
是否滿足要求的檢查函數(shù)再膳,而LayerSetUp
則是每個層自己的專門的配置函數(shù),需要在繼承的時候去實現(xiàn)的虛函數(shù)曲横;Reshape
也是喂柒,最后說下這個SetLossWeights
這個函數(shù)我之前沒見過,而且它計算loss
的方式居然是用weights
點積data
禾嫉,然后求和灾杰,不知道為什么要這樣。熙参。
/**
* @brief Does layer-specific setup: your layer should implement this function
* as well as Reshape.
*
* @param bottom
* the preshaped input blobs, whose data fields store the input data for
* this layer
* @param top
* the allocated but unshaped output blobs
*
* This method should do one-time layer specific setup. This includes reading
* and processing relevent parameters from the <code>layer_param_</code>.
* Setting up the shapes of top blobs and internal buffers should be done in
* <code>Reshape</code>, which will be called before the forward pass to
* adjust the top blob sizes.
*/
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
看到?jīng)]艳吠,這個函數(shù)主要是讀取處理這個特殊層的參數(shù)的,比如說conv_layer
啊孽椰,就要讀取stride
昭娩,kernel_size
之類的參數(shù),這都是特殊層才有的參數(shù)黍匾。
/**
* @brief Whether a layer should be shared by multiple nets during data
* parallelism. By default, all layers except for data layers should
* not be shared. data layers should be shared to ensure each worker
* solver access data sequentially during data parallelism.
*/
virtual inline bool ShareInParallel() const { return false; }
/** @brief Return whether this layer is actually shared by other nets.
* If ShareInParallel() is true and using more than one GPU and the
* net has TRAIN phase, then this function is expected return true.
*/
inline bool IsShared() const { return is_shared_; }
/** @brief Set whether this layer is actually shared by other nets
* If ShareInParallel() is true and using more than one GPU and the
* net has TRAIN phase, then is_shared should be set true.
*/
inline void SetShared(bool is_shared) {
CHECK(ShareInParallel() || !is_shared)
<< type() << "Layer does not support sharing.";
is_shared_ = is_shared;
}
這幾個函數(shù)是處理層的數(shù)據(jù)共享問題的栏渺,現(xiàn)在還用不到;
/**
* @brief Adjust the shapes of top blobs and internal buffers to accommodate
* the shapes of the bottom blobs.
*
* @param bottom the input blobs, with the requested input shapes
* @param top the top blobs, which should be reshaped as needed
*
* This method should reshape top blobs as needed according to the shapes
* of the bottom (input) blobs, as well as reshaping any internal buffers
* and making any other necessary adjustments so that the layer can
* accommodate the bottom blobs.
*/
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) = 0;
根據(jù)bottom blob
的配置調(diào)整top blob
的配置锐涯,同時要設(shè)置一些內(nèi)部緩存的形狀磕诊。。。
/**
* @brief Given the bottom blobs, compute the top blobs and the loss.
*
* @param bottom
* the input blobs, whose data fields store the input data for this layer
* @param top
* the preshaped output blobs, whose data fields will store this layers'
* outputs
* \return The total loss from the layer.
*
* The Forward wrapper calls the relevant device wrapper function
* (Forward_cpu or Forward_gpu) to compute the top blob values given the
* bottom blobs. If the layer has any non-zero loss_weights, the wrapper
* then computes and returns the loss.
*
* Your layer should implement Forward_cpu and (optionally) Forward_gpu.
*/
inline Dtype Forward(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
這個就是正向傳播的函數(shù)
/**
* @brief Given the top blob error gradients, compute the bottom blob error
* gradients.
*
* @param top
* the output blobs, whose diff fields store the gradient of the error
* with respect to themselves
* @param propagate_down
* a vector with equal length to bottom, with each index indicating
* whether to propagate the error gradients down to the bottom blob at
* the corresponding index
* @param bottom
* the input blobs, whose diff fields will store the gradient of the error
* with respect to themselves after Backward is run
*
* The Backward wrapper calls the relevant device wrapper function
* (Backward_cpu or Backward_gpu) to compute the bottom blob diffs given the
* top blob diffs.
*
* Your layer should implement Backward_cpu and (optionally) Backward_gpu.
*/
inline void Backward(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom);
同樣霎终,反向傳播函數(shù)滞磺;注意top blob
的梯度放在了它的diff
數(shù)據(jù)體中;
/**
* @brief Returns the vector of learnable parameter blobs.
*/
vector<shared_ptr<Blob<Dtype> > >& blobs() {
return blobs_;
}
/**
* @brief Returns the layer parameter.
*/
const LayerParameter& layer_param() const { return layer_param_; }
/**
* @brief Writes the layer parameter to a protocol buffer
*/
virtual void ToProto(LayerParameter* param, bool write_diff = false);
/**
* @brief Returns the scalar loss associated with a top blob at a given index.
*/
inline Dtype loss(const int top_index) const {
return (loss_.size() > top_index) ? loss_[top_index] : Dtype(0);
}
/**
* @brief Sets the loss associated with a top blob at a given index.
*/
inline void set_loss(const int top_index, const Dtype value) {
if (loss_.size() <= top_index) {
loss_.resize(top_index + 1, Dtype(0));
}
loss_[top_index] = value;
}
感覺這個地方是不是有BUG莱褒,击困,,實現(xiàn)有問題吧保礼,怎么能全部resize
到0
沛励,然后賦值呢,炮障,那這樣豈不是只有最后一個有值目派,其它前面的都是0
?胁赢?企蹭??mark以下先
/**
* @brief Returns the layer type.
*/
virtual inline const char* type() const { return ""; }
上面幾個函數(shù)都是很輕量的智末,理解一下就好了
/**
* @brief Returns the exact number of bottom blobs required by the layer,
* or -1 if no exact number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some exact number of bottom blobs.
*/
virtual inline int ExactNumBottomBlobs() const { return -1; }
/**
* @brief Returns the minimum number of bottom blobs required by the layer,
* or -1 if no minimum number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some minimum number of bottom blobs.
*/
virtual inline int MinBottomBlobs() const { return -1; }
/**
* @brief Returns the maximum number of bottom blobs required by the layer,
* or -1 if no maximum number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some maximum number of bottom blobs.
*/
virtual inline int MaxBottomBlobs() const { return -1; }
/**
* @brief Returns the exact number of top blobs required by the layer,
* or -1 if no exact number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some exact number of top blobs.
*/
virtual inline int ExactNumTopBlobs() const { return -1; }
/**
* @brief Returns the minimum number of top blobs required by the layer,
* or -1 if no minimum number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some minimum number of top blobs.
*/
virtual inline int MinTopBlobs() const { return -1; }
/**
* @brief Returns the maximum number of top blobs required by the layer,
* or -1 if no maximum number is required.
*
* This method should be overridden to return a non-negative value if your
* layer expects some maximum number of top blobs.
*/
virtual inline int MaxTopBlobs() const { return -1; }
/**
* @brief Returns true if the layer requires an equal number of bottom and
* top blobs.
*
* This method should be overridden to return true if your layer expects an
* equal number of bottom and top blobs.
*/
virtual inline bool EqualNumBottomTopBlobs() const { return false; }
這一堆函數(shù)都是一些top blob
和bottom blob
的一些限制函數(shù)谅摄,用來檢查這個層的參數(shù)是否設(shè)置正確的,這些都是虛函數(shù)系馆,可以在特定層中自定義送漠;
/**
* @brief Return whether "anonymous" top blobs are created automatically
* by the layer.
*
* If this method returns true, Net::Init will create enough "anonymous" top
* blobs to fulfill the requirement specified by ExactNumTopBlobs() or
* MinTopBlobs().
*/
virtual inline bool AutoTopBlobs() const { return false; }
如果這個返回為true
,則在搭建Net
時可能會根據(jù)限制條件構(gòu)建一些沒有命名的blob
以滿足要求由蘑;這能增強程序的健壯性闽寡,但是使得可理解性下降了;
/**
* @brief Return whether to allow force_backward for a given bottom blob
* index.
*
* If AllowForceBackward(i) == false, we will ignore the force_backward
* setting and backpropagate to blob i only if it needs gradient information
* (as is done when force_backward == false).
*/
virtual inline bool AllowForceBackward(const int bottom_index) const {
return true;
}
/**
* @brief Specifies whether the layer should compute gradients w.r.t. a
* parameter at a particular index given by param_id.
*
* You can safely ignore false values and always compute gradients
* for all parameters, but possibly with wasteful computation.
*/
inline bool param_propagate_down(const int param_id) {
return (param_propagate_down_.size() > param_id) ?
param_propagate_down_[param_id] : false;
}
/**
* @brief Sets whether the layer should compute gradients w.r.t. a
* parameter at a particular index given by param_id.
*/
inline void set_param_propagate_down(const int param_id, const bool value) {
if (param_propagate_down_.size() <= param_id) {
param_propagate_down_.resize(param_id + 1, true);
}
param_propagate_down_[param_id] = value;
}
這三個函數(shù)都是與反向傳播有關(guān)系的尼酿;
protected:
/** The protobuf that stores the layer parameters */
LayerParameter layer_param_;
/** The phase: TRAIN or TEST */
Phase phase_;
/** The vector that stores the learnable parameters as a set of blobs. */
vector<shared_ptr<Blob<Dtype> > > blobs_;
/** Vector indicating whether to compute the diff of each param blob. */
vector<bool> param_propagate_down_;
/** The vector that indicates whether each top blob has a non-zero weight in
* the objective function. */
vector<Dtype> loss_;
保護成員中包括了基本的參數(shù)成員爷狈;
/** @brief Using the CPU device, compute the layer output. */
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) = 0;
/**
* @brief Using the GPU device, compute the layer output.
* Fall back to Forward_cpu() if unavailable.
*/
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
// LOG(WARNING) << "Using CPU code as backup.";
return Forward_cpu(bottom, top);
}
/**
* @brief Using the CPU device, compute the gradients for any parameters and
* for the bottom blobs if propagate_down is true.
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) = 0;
/**
* @brief Using the GPU device, compute the gradients for any parameters and
* for the bottom blobs if propagate_down is true.
* Fall back to Backward_cpu() if unavailable.
*/
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
// LOG(WARNING) << "Using CPU code as backup.";
Backward_cpu(top, propagate_down, bottom);
}
這四個函數(shù)就是我們在繼承中要實現(xiàn)的,其中cpu
版本是要強制實現(xiàn)的裳擎,gpu
版本可以選擇性實現(xiàn)涎永;
/**
* Called by the parent Layer's SetUp to check that the number of bottom
* and top Blobs provided as input match the expected numbers specified by
* the {ExactNum,Min,Max}{Bottom,Top}Blobs() functions.
*/
virtual void CheckBlobCounts(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
if (ExactNumBottomBlobs() >= 0) {
CHECK_EQ(ExactNumBottomBlobs(), bottom.size())
<< type() << " Layer takes " << ExactNumBottomBlobs()
<< " bottom blob(s) as input.";
}
if (MinBottomBlobs() >= 0) {
CHECK_LE(MinBottomBlobs(), bottom.size())
<< type() << " Layer takes at least " << MinBottomBlobs()
<< " bottom blob(s) as input.";
}
if (MaxBottomBlobs() >= 0) {
CHECK_GE(MaxBottomBlobs(), bottom.size())
<< type() << " Layer takes at most " << MaxBottomBlobs()
<< " bottom blob(s) as input.";
}
if (ExactNumTopBlobs() >= 0) {
CHECK_EQ(ExactNumTopBlobs(), top.size())
<< type() << " Layer produces " << ExactNumTopBlobs()
<< " top blob(s) as output.";
}
if (MinTopBlobs() >= 0) {
CHECK_LE(MinTopBlobs(), top.size())
<< type() << " Layer produces at least " << MinTopBlobs()
<< " top blob(s) as output.";
}
if (MaxTopBlobs() >= 0) {
CHECK_GE(MaxTopBlobs(), top.size())
<< type() << " Layer produces at most " << MaxTopBlobs()
<< " top blob(s) as output.";
}
if (EqualNumBottomTopBlobs()) {
CHECK_EQ(bottom.size(), top.size())
<< type() << " Layer produces one top blob as output for each "
<< "bottom blob input.";
}
}
檢查函數(shù);
/**
* Called by SetUp to initialize the weights associated with any top blobs in
* the loss function. Store non-zero loss weights in the diff blob.
*/
inline void SetLossWeights(const vector<Blob<Dtype>*>& top) {
const int num_loss_weights = layer_param_.loss_weight_size();
if (num_loss_weights) {
CHECK_EQ(top.size(), num_loss_weights) << "loss_weight must be "
"unspecified or specified once per top blob.";
for (int top_id = 0; top_id < top.size(); ++top_id) {
const Dtype loss_weight = layer_param_.loss_weight(top_id);
if (loss_weight == Dtype(0)) { continue; }
this->set_loss(top_id, loss_weight);
const int count = top[top_id]->count();
Dtype* loss_multiplier = top[top_id]->mutable_cpu_diff();
caffe_set(count, loss_weight, loss_multiplier);
}
}
}
將loss_weight
這個參數(shù)存儲在top blob
的diff
數(shù)據(jù)體中鹿响;
private:
/** Whether this layer is actually shared by other nets*/
bool is_shared_;
/** The mutex for sequential forward if this layer is shared */
shared_ptr<boost::mutex> forward_mutex_;
/** Initialize forward_mutex_ */
void InitMutex();
/** Lock forward_mutex_ if this layer is shared */
void Lock();
/** Unlock forward_mutex_ if this layer is shared */
void Unlock();
DISABLE_COPY_AND_ASSIGN(Layer);
}; // class Layer
這些私有成員其實是與進程有關(guān)的東西羡微,用到了boost
中的lock
之類的;
// Forward and backward wrappers. You should implement the cpu and
// gpu specific implementations instead, and should not change these
// functions.
template <typename Dtype>
inline Dtype Layer<Dtype>::Forward(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
// Lock during forward to ensure sequential forward
Lock();
Dtype loss = 0;
Reshape(bottom, top);
switch (Caffe::mode()) {
case Caffe::CPU:
Forward_cpu(bottom, top);
for (int top_id = 0; top_id < top.size(); ++top_id) {
if (!this->loss(top_id)) { continue; }
const int count = top[top_id]->count();
const Dtype* data = top[top_id]->cpu_data();
const Dtype* loss_weights = top[top_id]->cpu_diff();
loss += caffe_cpu_dot(count, data, loss_weights);
}
break;
case Caffe::GPU:
Forward_gpu(bottom, top);
#ifndef CPU_ONLY
for (int top_id = 0; top_id < top.size(); ++top_id) {
if (!this->loss(top_id)) { continue; }
const int count = top[top_id]->count();
const Dtype* data = top[top_id]->gpu_data();
const Dtype* loss_weights = top[top_id]->gpu_diff();
Dtype blob_loss = 0;
caffe_gpu_dot(count, data, loss_weights, &blob_loss);
loss += blob_loss;
}
#endif
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
Unlock();
return loss;
}
這個函數(shù)是基類的函數(shù)惶我,也是我們會一直使用的拷淘,這其實就是一個wrapper
,我們在具體層的開發(fā)時需要設(shè)計里面的Forward_cpu
指孤,Backward_cpu
等函數(shù),,注意里面開始就加鎖Lock
恃轩,最后解鎖Unlock
结洼;另外還做了Reshape
,我的想法是這應(yīng)該是在SetUp
中已經(jīng)做過了啊叉跛,怎么又做一遍呢松忍。。另外如果Caffe::GPU
和CPU_ONLY
同時存在筷厘,是不是就不要計算loss
了鸣峭,,尷尬啊
template <typename Dtype>
inline void Layer<Dtype>::Backward(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
switch (Caffe::mode()) {
case Caffe::CPU:
Backward_cpu(top, propagate_down, bottom);
break;
case Caffe::GPU:
Backward_gpu(top, propagate_down, bottom);
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
}
// Serialize LayerParameter to protocol buffer
template <typename Dtype>
void Layer<Dtype>::ToProto(LayerParameter* param, bool write_diff) {
param->Clear();
param->CopyFrom(layer_param_);
param->clear_blobs();
for (int i = 0; i < blobs_.size(); ++i) {
blobs_[i]->ToProto(param->add_blobs(), write_diff);
}
}
這個寫到LayerParameter *
里面這個函數(shù)其實就是一個io
函數(shù)酥艳,只不過我們在進行了一系列操作后摊溶,需要將blob_
中的東西寫入到param
中的blobs
去,這樣才算成功充石;
} // namespace caffe
#endif // CAFFE_LAYER_H_
最后我們來看看這個基類的cpp
文件莫换,其實因為是基類,所以它的cpp
文件相當(dāng)簡單骤铃;就是關(guān)于進程的加鎖解鎖以及具體化layer
模板拉岁;
#include <boost/thread.hpp>
#include "caffe/layer.hpp"
namespace caffe {
template <typename Dtype>
void Layer<Dtype>::InitMutex() {
forward_mutex_.reset(new boost::mutex());
}
template <typename Dtype>
void Layer<Dtype>::Lock() {
if (IsShared()) {
forward_mutex_->lock();
}
}
template <typename Dtype>
void Layer<Dtype>::Unlock() {
if (IsShared()) {
forward_mutex_->unlock();
}
}
INSTANTIATE_CLASS(Layer);
} // namespace caffe