一致性哈希是一種常用的分布式哈希算法淆攻,用于將鍵(key)映射到節(jié)點(diǎn)(node),以實(shí)現(xiàn)負(fù)載均衡和分布式存儲(chǔ)已日。一下是一個(gè)簡(jiǎn)單的一致性哈希算法垛耳,并通過(guò)示例代碼驗(yàn)證其正確性。
一、一致性哈希算法簡(jiǎn)介
一致性哈希算法是一種將鍵映射到節(jié)點(diǎn)的分布式哈希算法堂鲜,其基本思想是將所有可能的鍵和節(jié)點(diǎn)分布在一個(gè)哈希環(huán)上栈雳,通過(guò)哈希函數(shù)計(jì)算鍵的哈希值,并在哈希環(huán)上找到距離最近的節(jié)點(diǎn)作為鍵的所屬節(jié)點(diǎn)缔莲。
二哥纫、Java 實(shí)現(xiàn)一致性哈希算法:在 Java 中,我們可以使用 TreeMap 來(lái)表示哈希環(huán)痴奏,通過(guò) TreeMap 的 tailMap 方法來(lái)查找距離最近的節(jié)點(diǎn)蛀骇。以下是一個(gè)簡(jiǎn)單的一致性哈希算法的實(shí)現(xiàn):
public class ConsistentHashing {
private SortedMap<Integer, String> circle = new TreeMap<>();
private List<String> nodes = new ArrayList<>();
private final int numberOfReplicas = 3; // 虛擬節(jié)點(diǎn)的副本數(shù)
/**
* 計(jì)算hash值
*/
private int getHash1(String key) {
final int prime = 31;
int hash = 0;
for (char c : key.toCharArray()) {
hash = prime * hash + c;
}
return hash;
}
private int getHash2(String key) {
return key.hashCode();
}
private int getHash(String key) {
return ConsistentHashingHashFunction.hashCode(key);
}
public void addNode(String node) {
nodes.add(node);
for (int i = 0; i < numberOfReplicas; i++) {
int hash = this.getHash(node + i);
circle.put(hash, node);
}
}
public void removeNode(String node) {
nodes.remove(node);
for (int i = 0; i < numberOfReplicas; i++) {
int hash = this.getHash(node + i);
circle.remove(hash);
}
}
public String getNode(String key) {
//沒(méi)有可用節(jié)點(diǎn)直接返回
if (circle.isEmpty()) {
return null;
}
int hash = this.getHash(key);
if (!circle.containsKey(hash)) {
//hash環(huán)中不存在,說(shuō)明沒(méi)有映射到具體節(jié)點(diǎn)读拆,于是去找大于等于該hash值的所有節(jié)點(diǎn)擅憔,即順時(shí)針便利
SortedMap<Integer, String> tailMap = circle.tailMap(hash);
hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
}
return circle.get(hash);
}
public static void main(String[] args) {
ConsistentHashing test = new ConsistentHashing();
// 添加模擬的物理節(jié)點(diǎn)
test.addNode("192.168.0.1");
test.addNode("192.168.0.2");
test.addNode("192.168.0.3");
// 模擬查找多個(gè)鍵的所屬節(jié)點(diǎn)
String[] keys = {"A-1", "He-2", "Oey-3", "ReyA-4", "YeyDF-5"};
for (String key : keys) {
String node = test.getNode(key);
System.out.println("Key: " + key + " => Node: " + node);
}
// 模擬刪除一個(gè)物理節(jié)點(diǎn)并重新查找所屬節(jié)點(diǎn)
test.removeNode("192.168.0.2");
System.out.println("After removing Node 192.168.0.2:");
for (String key : keys) {
String node = test.getNode(key);
System.out.println("Key: " + key + " => Node: " + node);
}
}
}
四、Redis CRC16算法的java實(shí)現(xiàn)(大概抄了一下不保證正確)
public class ConsistentHashingHashFunction {
// Redis CRC16算法
private static final int CRC16_POLY = 0x1021;
private static final int CRC16_INIT = 0xFFFF;
public static int hashCode(String key) {
byte[] bytes = key.getBytes();
int crc = CRC16_INIT;
for (byte b : bytes) {
crc ^= (b & 0xff) << 8;
for (int i = 0; i < 8; i++) {
if ((crc & 0x8000) != 0) {
crc = (crc << 1) ^ CRC16_POLY;
} else {
crc <<= 1;
}
}
}
return crc & 0xffff;
}
public static void main(String[] args) {
// 測(cè)試不同鍵的CRC16哈希值
String[] keys = {"Key-1", "Key-2", "Key-3", "Key-4", "Key-5"};
for (String key : keys) {
int hash = hashCode(key);
System.out.println("Key: " + key + " => CRC16 Hash: " + hash);
}
}
}