A結(jié)構(gòu)
B代碼
A結(jié)構(gòu):
結(jié)構(gòu)為8段暴构。(不包含LRN與池化層)
conv1_1+conv1_2+pool1 ----->conv2_1+conv2_2+pool2----->conv3_1+conv3_2+conv3_3+pool3----->conv4_1+conv4_2+conv4_3+pool4------>conv5_1+conv5_2+conv5_3+pool5---->3個全連接(fc6&dropout---->fc7&dropout---->fc8)
其中輸入結(jié)構(gòu)【32,224饲宿,224,3】其中32為batchsize,224x224是圖像大小,深度為3
conv1_1輸出的結(jié)構(gòu)【32幕庐,224,224家淤,64】
pool1輸出的結(jié)構(gòu)【32异剥,112,112絮重,64】
也就是說 第一段統(tǒng)稱co4nv1輸出的結(jié)構(gòu)是【32冤寿,112错妖,112,64】
conv2輸出的結(jié)構(gòu)【32疚沐,56暂氯,56,128】
conv3輸出的結(jié)構(gòu)【32亮蛔,28痴施,28,256】
conv4輸出的結(jié)構(gòu)【32究流,14辣吃,14,512】
conv5輸出的結(jié)構(gòu)【32芬探,7勇垛,7辈毯,512】一共25088個向量
fc6 4096
fc7 4096
fc8 1000
從上面結(jié)構(gòu)也可以看出,前四層每一段卷積都將邊長縮小一半,輸出通道翻倍舆绎。
上述中
卷積結(jié)構(gòu)【3享郊,3骄蝇,狼忱,64】,步長結(jié)構(gòu)【1别智,1宗苍,1,1】
卷積結(jié)構(gòu)【3薄榛,3讳窟,,64】敞恋,步長結(jié)構(gòu)【1丽啡,1,1耳舅,1】
池化結(jié)構(gòu)【1碌上,2倚评,2浦徊,1】,步長結(jié)構(gòu)【1天梧,2盔性,2,1】
卷積結(jié)構(gòu)【3呢岗,3冕香,蛹尝,128】,步長結(jié)構(gòu)【1悉尾,1突那,1,1】
卷積結(jié)構(gòu)【3构眯,3愕难,,128】惫霸,步長結(jié)構(gòu)【1猫缭,1,1壹店,1】
池化結(jié)構(gòu)【1猜丹,2,2硅卢,1】射窒,步長結(jié)構(gòu)【1,2将塑,2轮洋,1】
卷積結(jié)構(gòu)【3,3抬旺,弊予,256】,步長結(jié)構(gòu)【1开财,1汉柒,1,1】
卷積結(jié)構(gòu)【3责鳍,3碾褂,,256】历葛,步長結(jié)構(gòu)【1正塌,1,1恤溶,1】
卷積結(jié)構(gòu)【3乓诽,3,_咒程,256】鸠天,步長結(jié)構(gòu)【1,1帐姻,1稠集,1】
池化結(jié)構(gòu)【1奶段,2,2剥纷,1】痹籍,步長結(jié)構(gòu)【1,2晦鞋,2词裤,1】
卷積結(jié)構(gòu)【3,3鳖宾,吼砂,512】,步長結(jié)構(gòu)【1鼎文,1渔肩,1,1】
卷積結(jié)構(gòu)【3拇惋,3周偎,,512】撑帖,步長結(jié)構(gòu)【1蓉坎,1,1胡嘿,1】
卷積結(jié)構(gòu)【3蛉艾,3,_衷敌,512】勿侯,步長結(jié)構(gòu)【1,1缴罗,1助琐,1】
池化結(jié)構(gòu)【1,2面氓,2兵钮,1】,步長結(jié)構(gòu)【1舌界,2掘譬,2,1】
卷積結(jié)構(gòu)【3禀横,3屁药,粥血,512】柏锄,步長結(jié)構(gòu)【1酿箭,1,1趾娃,1】
卷積結(jié)構(gòu)【3缭嫡,3,抬闷,512】妇蛀,步長結(jié)構(gòu)【1,1笤成,1评架,1】
卷積結(jié)構(gòu)【3,3炕泳,_纵诞,512】,步長結(jié)構(gòu)【1培遵,1浙芙,1,1】
池化結(jié)構(gòu)【1籽腕,2嗡呼,2,1】皇耗,步長結(jié)構(gòu)【1南窗,2,2郎楼,1】
全鏈接3層節(jié)點分別4096矾瘾,4096,1000箭启。到這里壕翩,是不是可以根據(jù)所有信息自己實現(xiàn)代碼了呢~
B代碼:
測試結(jié)果:
書 GPU:每10步0.15分鐘
我CPU:每10步26分鐘
from datetime import datetime
import math
import time
import tensorflow as tf
#用來創(chuàng)建卷積層并把參數(shù)存入?yún)?shù)列表
#輸入的tensor
#這一層的名字
#kh是卷積核的高
#kw是卷積核的寬
#n_out是卷積核的數(shù)量,輸出通道數(shù)
#dh是步長的高
#dw是步長的寬
#p是參數(shù)列表
def conv_op(input_op, name,kh,kw,n_out,dh,dw,p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",
shape= [kh,kw,n_in,n_out],dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d())
conv = tf.nn.conv2d(input_op,kernel,(1,dh,dw,1),padding='SAME')
bias_init_val = tf.constant(0.0,shape=[n_out],dtype=tf.float32)
biases = tf.Variable(bias_init_val,trainable=True,name='b')
z = tf.nn.bias_add(conv,biases)
activation = tf.nn.relu(z,name=scope)
p += [kernel,biases]
return activation
def fc_op(input_op, name,n_out,p):
n_in = input_op.get_shape()[-1].value
with tf.name_scope(name) as scope:
kernel = tf.get_variable(scope+"w",
shape=[n_in,n_out],dtype=tf.float32,initializer=tf.contrib.layers.xavier_initializer())
biases = tf.Variable(tf.constant(0.1,shape=[n_out],dtype=tf.float32),name='b')
activation= tf.nn.relu_layer(input_op,kernel,biases,name= scope)
p+=[kernel,biases]
return activation
def mpool_op(input_op,name, kh,kw,dh,dw):
return tf.nn.max_pool(input_op,ksize=[1,kh,kw,1],strides=[1,dh,dw,1],padding='SAME',name=name)
def inference_op(input_op, keep_prob):
p = []
# assume input_op shape is 224x224x3
# block 1 -- outputs 112x112x64
conv1_1 = conv_op(input_op, name="conv1_1", kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
conv1_2 = conv_op(conv1_1, name="conv1_2", kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
pool1 = mpool_op(conv1_2, name="pool1", kh=2, kw=2, dw=2, dh=2)
# block 2 -- outputs 56x56x128
conv2_1 = conv_op(pool1, name="conv2_1", kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
conv2_2 = conv_op(conv2_1, name="conv2_2", kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
pool2 = mpool_op(conv2_2, name="pool2", kh=2, kw=2, dh=2, dw=2)
# # block 3 -- outputs 28x28x256
conv3_1 = conv_op(pool2, name="conv3_1", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
conv3_2 = conv_op(conv3_1, name="conv3_2", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
conv3_3 = conv_op(conv3_2, name="conv3_3", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
pool3 = mpool_op(conv3_3, name="pool3", kh=2, kw=2, dh=2, dw=2)
# block 4 -- outputs 14x14x512
conv4_1 = conv_op(pool3, name="conv4_1", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv4_2 = conv_op(conv4_1, name="conv4_2", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv4_3 = conv_op(conv4_2, name="conv4_3", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
pool4 = mpool_op(conv4_3, name="pool4", kh=2, kw=2, dh=2, dw=2)
# block 5 -- outputs 7x7x512
conv5_1 = conv_op(pool4, name="conv5_1", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv5_2 = conv_op(conv5_1, name="conv5_2", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
conv5_3 = conv_op(conv5_2, name="conv5_3", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
pool5 = mpool_op(conv5_3, name="pool5", kh=2, kw=2, dw=2, dh=2)
# flatten
shp = pool5.get_shape()
flattened_shape = shp[1].value * shp[2].value * shp[3].value
resh1 = tf.reshape(pool5, [-1, flattened_shape], name="resh1")
# fully connected
fc6 = fc_op(resh1, name="fc6", n_out=4096, p=p)
fc6_drop = tf.nn.dropout(fc6, keep_prob, name="fc6_drop")
fc7 = fc_op(fc6_drop, name="fc7", n_out=4096, p=p)
fc7_drop = tf.nn.dropout(fc7, keep_prob, name="fc7_drop")
fc8 = fc_op(fc7_drop, name="fc8", n_out=1000, p=p)
softmax = tf.nn.softmax(fc8)
predictions = tf.argmax(softmax, 1)
return predictions, softmax, fc8, p
def time_tensorflow_run(session, target, feed, info_string):
num_steps_burn_in = 10
total_duration = 0.0
total_duration_squared = 0.0
for i in range(num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target, feed_dict=feed)
duration = time.time() - start_time
if i >= num_steps_burn_in:
if not i % 10:
print ('%s: step %d, duration = %.3f' %
(datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / num_batches
vr = total_duration_squared / num_batches - mn * mn
sd = math.sqrt(vr)
print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(), info_string, num_batches, mn, sd))
def run_benchmark():
with tf.Graph().as_default():
image_size = 224
images = tf.Variable(tf.random_normal([batch_size,
image_size,
image_size, 3],
dtype=tf.float32,
stddev=1e-1))
keep_prob = tf.placeholder(tf.float32)
predictions, softmax, fc8, p = inference_op(images, keep_prob)
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
sess = tf.Session(config=config)
sess.run(init)
time_tensorflow_run(sess, predictions, {keep_prob:1.0}, "Forward")
objective = tf.nn.l2_loss(fc8)
grad = tf.gradients(objective, p)
time_tensorflow_run(sess, grad, {keep_prob:0.5}, "Forward-backward")
batch_size=32
num_batches=100
run_benchmark()