測試mkldnn矩陣乘
需要將MKL_LIB_PATH="intel_2020.3.279/lib/intel64:intel_2020.3.279/mkl/lib/intel64"
加入到LD_LIBRARY_PATH中竿刁。
example 目錄 intel_2020.3.279/mkl/examples/cblas/source/cblas_sgemmx.c 這是mkl自帶的example捶码,還有cblas_gemm_s8u8s32x.c代表signed int8绅项,unsigned int8体斩,signed int32贬媒,對應傳入的A割卖、B阀趴、C矩陣數(shù)據(jù)類型泛源,表示INT8量化加速接口简识。
編譯命令:
make libintel64 function=cblas_gemm_s8u8s32 compiler=gnu
make libintel64 function=cblas_sgemm compiler=gnu
可以指定編譯器為gnu還是intel的赶掖,也可以指定是并行多線程parallel還是單線程
Linux安裝oneDNN
先從git clone,然后需要指定make install的安裝目錄:
mkdir -p build && cd build
cmake -D CMAKE_INSTALL_PREFIX=/data1/duoren/oneDNN ..
make -j
make install
編譯程序時使用命令g++ -g -o sgemm -std=c++11 -I${DNNLROOT}/include -L${DNNLROOT}/lib64 cpu_sgemm_and_matmul.cpp -ldnnl
其中$DNNLROOT
是make install的目錄七扰,否則會報dnnl_config.h.in
以及libdnnl.so
找不到的錯誤奢赂。
其中oneDNN/examples/tutorials/matmul/cpu_sgemm_and_matmul.cpp
是測試矩陣乘接口的文件,但是要放到examples目錄下颈走,因為需要引入example_utils.hpp頭文件膳灶。
在onednn中,gemm有三種實現(xiàn)方案立由,gemm轧钓,static gemm和dynamic gemm。這些在mkl是沒有的锐膜。
舊版mkl-dnn的gemm使用的是mkl的gemm毕箍,mkl對于小矩陣的計算,速度并不快道盏。舊版mkl-dnn主要是做cnn和lstm的優(yōu)化
onednn中而柑,有兩個選擇,1繼續(xù)使用mkl的gemm荷逞,2使用新的gemm媒咳。
安裝OpenBlas
make
make install PREFIX=your_installation_directory
默認安裝到/opt/OpenBLAS/lib,否則需要將其加到LD_LIBRARY_PATH种远。
編譯命令:g++ -g -o sgemm compare_sgemm_shgemm.c -I/opt/OpenBLAS/include -L/opt/OpenBLAS/lib/ -lopenblas
linux查看CPU型號
centos7.6 cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c
ubuntu18.04 grep "model name" /proc/cpuinfo |awk -F ':' '{print $NF}'
IDC服務器:Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
MIT服務器:Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz