https://tianchi.aliyun.com/competition/entrance/231702/rankingList
一憔鬼、數(shù)據(jù)和模型初探
1.1 數(shù)據(jù)預(yù)處理
# coding=utf-8
import pandas as pd
import numpy as np
from sklearn import preprocessing
df=pd.read_csv(r'/Users/ranmo/Desktop/天池/幸福感/happiness_train_complete.csv',encoding='GB2312',index_col='id')
df = df[df["happiness"]>0] #原表中幸福度非正的都是錯(cuò)誤數(shù)據(jù),可以剔除12條錯(cuò)誤數(shù)據(jù)
df.dtypes[df.dtypes==object] #查得有四列不是數(shù)據(jù)類(lèi)型啊楚,需要對(duì)其進(jìn)行轉(zhuǎn)化
for i in range(df.dtypes[df.dtypes==object].shape[0]):
print(df.dtypes[df.dtypes==object].index[i])
#轉(zhuǎn)化四列數(shù)據(jù),轉(zhuǎn)換后df全為數(shù)值格式
df["survey_month"] = df["survey_time"].transform(lambda line:line.split(" ")[0].split("/")[1]).astype("int64") #返回調(diào)查月:用空格來(lái)切分日期和時(shí)間笨使,日期中第1項(xiàng)為月
df["survey_day"] = df["survey_time"].transform(lambda line:line.split(" ")[0].split("/")[2]).astype("int64") #返回調(diào)查日
df["survey_hour"] = df["survey_time"].transform(lambda line:line.split(" ")[1].split(":")[0]).astype("int64") #返回調(diào)查小時(shí)
df=df.drop(columns='survey_time')
enc1=preprocessing.OrdinalEncoder()
enc2=preprocessing.OrdinalEncoder()
enc3=preprocessing.OrdinalEncoder()
df['edu_other']=enc1.fit_transform(df['edu_other'].fillna(0).transform(lambda x:str(x)).values.reshape(-1,1))
print(enc.categories_) #查看編碼類(lèi)型
df['property_other']=enc2.fit_transform(df['property_other'].fillna(0).transform(lambda x:str(x)).values.reshape(-1,1))
print(enc.categories_) #查看編碼類(lèi)型
df['invest_other']=enc3.fit_transform(df['invest_other'].fillna(0).transform(lambda x:str(x)).values.reshape(-1,1))
print(enc.categories_) #查看編碼類(lèi)型
#確定X和Y
X=df.drop(columns='happiness').fillna(0)
Y=df.happiness
1.2 基本模型跑一遍看效果
- 線性回歸
from sklearn import metrics
from sklearn import linear_model
from sklearn import model_selection
#=============
#1美澳、線性回歸
#=============
#=============
#1.1陵究、普通線性回歸
#=============
reg11=linear_model.LinearRegression()
#交叉驗(yàn)證確定準(zhǔn)確率眠饮,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
#mes1是未取整铜邮,mes2是四舍五入取整,mes3是向下取整仪召,mes4是向上取整
mes1=[]
mes2=[]
mes3=[]
mes4=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=reg1.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
e2=metrics.mean_squared_error(np.round(y_pred),y_test)
e3=metrics.mean_squared_error(np.trunc(y_pred),y_test)
e4=metrics.mean_squared_error(np.ceil(y_pred),y_test)
mes1.append(e1)
mes2.append(e2)
mes3.append(e3)
mes4.append(e4)
print('normal_liner:')
print(mes1)
print(np.mean(mes1))
print('-------------')
print(mes2)
print(np.mean(mes2))
print('-------------')
print(mes3)
print(np.mean(mes3))
print('-------------')
print(mes4)
print(np.mean(mes4))
print()
print()
#表明幾種取整的方案都不是很好,不如回歸的效果松蒜,但是回歸的非整數(shù)也不滿(mǎn)足目標(biāo)值需求扔茅,因此要考慮分類(lèi)
#=============
#1.2、L1的lasso回歸
#=============
reg12=linear_model.Lasso()
#交叉驗(yàn)證確定準(zhǔn)確率秸苗,因?yàn)閷?duì)回歸值會(huì)采用取整操作召娜,所以不用自帶的交叉驗(yàn)證模型
#mes1是未取整,mes2是四舍五入取整,mes3是向下取整惊楼,mes4是向上取整
mes1=[]
mes2=[]
mes3=[]
mes4=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=reg2.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
e2=metrics.mean_squared_error(np.round(y_pred),y_test)
e3=metrics.mean_squared_error(np.trunc(y_pred),y_test)
e4=metrics.mean_squared_error(np.ceil(y_pred),y_test)
mes1.append(e1)
mes2.append(e2)
mes3.append(e3)
mes4.append(e4)
print('Lasso:')
print(mes1)
print(np.mean(mes1))
print('-------------')
print(mes2)
print(np.mean(mes2))
print('-------------')
print(mes3)
print(np.mean(mes3))
print('-------------')
print(mes4)
print(np.mean(mes4))
print()
print()
#=============
#1.3玖瘸、L2的嶺回歸
#=============
reg13=linear_model.Ridge()
#交叉驗(yàn)證確定準(zhǔn)確率秸讹,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
#mes1是未取整雅倒,mes2是四舍五入取整,mes3是向下取整璃诀,mes4是向上取整
mes1=[]
mes2=[]
mes3=[]
mes4=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=reg3.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
e2=metrics.mean_squared_error(np.round(y_pred),y_test)
e3=metrics.mean_squared_error(np.trunc(y_pred),y_test)
e4=metrics.mean_squared_error(np.ceil(y_pred),y_test)
mes1.append(e1)
mes2.append(e2)
mes3.append(e3)
mes4.append(e4)
print('Ridge:')
print(mes1)
print(np.mean(mes1))
print('-------------')
print(mes2)
print(np.mean(mes2))
print('-------------')
print(mes3)
print(np.mean(mes3))
print('-------------')
print(mes4)
print(np.mean(mes4))
print()
print()
#=============
#1.4愉阎、邏輯回歸
#=============
clf14=linear_model.LogisticRegression(penalty='none',solver='saga') #正則會(huì)導(dǎo)致準(zhǔn)確率下降悼嫉,所以不正則
#交叉驗(yàn)證確定準(zhǔn)確率步咪,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
mes1=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=reg3.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes1.append(e1)
print('LR:')
print(mes1)
print(np.mean(mes1))
print()
print()
#結(jié)論:普通二乘回歸和邏輯回歸效果最好
- SVM
from sklearn import metrics
from sklearn import svm
from sklearn import model_selection
#=============
#2殖演、SVM
#=============
clf2=svm.SVC() #gamma和C都是默認(rèn)值,沒(méi)有調(diào)參
#交叉驗(yàn)證確定準(zhǔn)確率年鸳,因?yàn)閷?duì)回歸值會(huì)采用取整操作趴久,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=clf2.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('SVM:')
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:效果很一般
- KNN
from sklearn import metrics
from sklearn import neighbors
from sklearn import model_selection
#=============
#3、KNN
#=============
for n in range(10,101,10): #K值肯定會(huì)造成影響
clf3=neighbors.KNeighborsClassifier(n_neighbors=n)
#交叉驗(yàn)證確定準(zhǔn)確率搔确,因?yàn)閷?duì)回歸值會(huì)采用取整操作彼棍,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=clf3.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('KNN(n=%d):'%n)
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:效果很一般
- naive_bayes
from sklearn import metrics
from sklearn import naive_bayes
from sklearn import model_selection
X_new=X # 本來(lái)想標(biāo)準(zhǔn)化,但發(fā)現(xiàn)標(biāo)準(zhǔn)化后的效果更差膳算,所以就沒(méi)有標(biāo)準(zhǔn)化
#=============
#4座硕、樸素貝葉斯
#=============
clf4=naive_bayes.GaussianNB() #多想分布樸素貝葉斯跑不通,必須是正定矩陣什么的涕蜂,所以這里用的高斯
#交叉驗(yàn)證確定準(zhǔn)確率华匾,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X_new.iloc[train]
y_train = Y.iloc[train]
X_test = X_new.iloc[test]
y_test = Y.iloc[test]
y_pred=clf4.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('bayes:')
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:效果很差机隙,說(shuō)明確實(shí)不適合用高斯貝葉斯蜘拉,如果用多項(xiàng)式貝葉斯想過(guò)可能會(huì)更好
- 決策樹(shù)
from sklearn import metrics
from sklearn import tree
from sklearn import model_selection
#=============
#5、決策樹(shù)
#=============
clf5=tree.DecisionTreeClassifier()
#交叉驗(yàn)證確定準(zhǔn)確率有鹿,因?yàn)閷?duì)回歸值會(huì)采用取整操作旭旭,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=clf5.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('Tree:')
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:效果很差
- MLP
from sklearn import metrics
from sklearn import neural_network
from sklearn import model_selection
#=============
#6、MLP
#=============
clf6=neural_network.MLPClassifier(hidden_layer_sizes=(10,8,5,3,2),activation='logistic') #隨意設(shè)置下隱藏層構(gòu)成
#交叉驗(yàn)證確定準(zhǔn)確率葱跋,因?yàn)閷?duì)回歸值會(huì)采用取整操作持寄,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=clf6.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('Tree:')
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:效果竟然還可以,之后可以考慮利用神經(jīng)網(wǎng)絡(luò)調(diào)參
- 隨機(jī)森林
from sklearn import metrics
from sklearn import ensemble
from sklearn import model_selection
#=============
#7娱俺、隨機(jī)森林
#=============
clf7=ensemble.RandomForestRegressor(n_estimators=20,n_jobs=-1)
#交叉驗(yàn)證確定準(zhǔn)確率际看,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=clf7.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('Tree:')
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:效果一般矢否,之后考慮調(diào)參
#=============
#看一下特征重要程度排序
import matplotlib.pyplot as plt
%matplotlib inline
a=ensemble.RandomForestRegressor(n_estimators=20).fit(X,Y).feature_importances_
temp=np.argsort(a) #返回index
a=list(a)
a.sort()
b=[]
for i in temp:
b.append(X.columns[i])
plt.figure(figsize=(10,40))
plt.grid()
plt.barh(b,a,)
#參數(shù)結(jié)論:
# 1仲闽、edu_other、property_other僵朗、invest_other這三項(xiàng)轉(zhuǎn)換數(shù)據(jù)都不太重要赖欣,而且property屑彻、invest的各項(xiàng)數(shù)據(jù)似乎都不重要
# 2、前十項(xiàng)中equity顶吮、depresion反映社會(huì)態(tài)度和心態(tài)社牲;
# class、family_income悴了、floor_area反映財(cái)富;
# birth搏恤、marital_1st、weight_jin湃交、country反映客觀狀態(tài)
# survey_day為什么也會(huì)有影響熟空,這是一個(gè)最有疑問(wèn)的指標(biāo)
- gdbt
from sklearn import metrics
from sklearn import ensemble
from sklearn import model_selection
#=============
#8、gdbt
#=============
clf8=ensemble.GradientBoostingRegressor(max_features=20) #必須要設(shè)置參數(shù)搞莺,不然跑太慢了
#交叉驗(yàn)證確定準(zhǔn)確率息罗,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=clf8.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('Tree:')
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:效果挺好
#=============
#看一下特征重要程度排序
import matplotlib.pyplot as plt
%matplotlib inline
a=ensemble.GradientBoostingClassifier().fit(X,Y).feature_importances_
temp=np.argsort(a) #返回index
a=list(a)
a.sort()
b=[]
for i in temp:
b.append(X.columns[i])
plt.figure(figsize=(10,40))
plt.grid()
plt.barh(b,a,)
- xgboost
from sklearn import metrics
import xgboost
from sklearn import model_selection
#=============
#9才沧、xgboost
#=============
clf9=xgboost.XGBRegressor()
#交叉驗(yàn)證確定準(zhǔn)確率迈喉,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=clf9.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('Tree:')
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:簡(jiǎn)直無(wú)語(yǔ)温圆,一來(lái)就取得這么好的效果挨摸。。岁歉。油坝。。
#=============
#看一下特征重要程度排序
import matplotlib.pyplot as plt
%matplotlib inline
a=xgboost.XGBRegressor().fit(X,Y).feature_importances_
temp=np.argsort(a) #返回index
a=list(a)
a.sort()
b=[]
for i in temp:
b.append(X.columns[i])
plt.figure(figsize=(10,40))
plt.grid()
plt.barh(b,a,)
- lightgbm
from sklearn import metrics
import lightgbm
from sklearn import model_selection
#lighgbm防報(bào)錯(cuò)
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
#=============
#10刨裆、LightGBM
#=============
clf10=lightgbm.LGBMRegressor()
#交叉驗(yàn)證確定準(zhǔn)確率澈圈,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
mes=[]
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test = X.iloc[test]
y_test = Y.iloc[test]
y_pred=clf10.fit(X_train,y_train).predict(X_test)
e1=metrics.mean_squared_error(y_pred,y_test)
mes.append(e1)
print('Tree:')
print(mes)
print(np.mean(mes))
print()
print()
#結(jié)論:效果也很好帆啃,之后再調(diào)參瞬女。。努潘。诽偷。。
#=============
#看一下特征重要程度排序
import matplotlib.pyplot as plt
%matplotlib inline
a=lightgbm.LGBMRegressor().fit(X,Y).feature_importances_
temp=np.argsort(a) #返回index
a=list(a)
a.sort()
b=[]
for i in temp:
b.append(X.columns[i])
plt.figure(figsize=(10,40))
plt.grid()
plt.barh(b,a,)
1.3 分析結(jié)果
從模型結(jié)果來(lái)看疯坤,gdbt报慕、xgboost和lightgbm的效果都很好,隨機(jī)森林效果很一般压怠,二乘回歸和lR的效果也不錯(cuò)眠冈,之后考慮利用xgboost、lightgbm菌瘫、gdbt和隨機(jī)森林調(diào)參增強(qiáng)模型蜗顽,然后還可以用LR進(jìn)一步融合模型布卡。
采用基本xgboost模型提交結(jié)果,原始數(shù)據(jù)結(jié)果得分為0.48043雇盖,四舍五入得分為0.55394忿等。。崔挖。贸街。
df1=pd.read_csv(r'/Users/ranmo/Desktop/天池/幸福感/happiness_test_complete.csv',encoding='GB2312',index_col='id')
#轉(zhuǎn)化四列數(shù)據(jù),轉(zhuǎn)換后df全為數(shù)值格式
df1["survey_month"] = df1["survey_time"].transform(lambda line:line.split(" ")[0].split("/")[1]).astype("int64") #返回調(diào)查月:用空格來(lái)切分日期和時(shí)間狸相,日期中第1項(xiàng)為月
df1["survey_day"] = df1["survey_time"].transform(lambda line:line.split(" ")[0].split("/")[2]).astype("int64") #返回調(diào)查日
df1["survey_hour"] = df1["survey_time"].transform(lambda line:line.split(" ")[1].split(":")[0]).astype("int64") #返回調(diào)查小時(shí)
df1=df1.drop(columns='survey_time')
def temp1(a):
if a not in enc1.categories_[0]:
return 0
else:
return a
df1['edu_other']=enc1.transform(df1['edu_other'].transform(temp1).transform(lambda x:str(x)).values.reshape(-1,1))
def temp2(a):
if a not in enc2.categories_[0]:
return 0
else:
return a
df1['property_other']=enc2.transform(df1['property_other'].transform(temp2).transform(lambda x:str(x)).values.reshape(-1,1))
def temp3(a):
if a not in enc3.categories_[0]:
return 0
else:
return a
df1['invest_other']=enc3.transform(df1['invest_other'].transform(temp2).transform(lambda x:str(x)).values.reshape(-1,1))
#確定X_test
X_test=df1.fillna(0)
# 結(jié)果1
y_test=xgboost.XGBRegressor().fit(X,Y).predict(X_test)
df1_final=pd.DataFrame({'id':X_test.index,'happiness':y_test}).set_index('id')
df1_final.to_csv(r'/Users/ranmo/Desktop/天池/幸福感/df1_final.csv')
# 結(jié)果1四舍五入
df1_final_round=pd.DataFrame({'id':X_test.index,'happiness':np.round(y_test)}).set_index('id')
df1_final_round.to_csv(r'/Users/ranmo/Desktop/天池/幸福感/df1_final.csv')
二薛匪、超參數(shù)搜索
2.1 xgboost
參考https://blog.csdn.net/han_xiaoyang/article/details/52665396
xgboost的參數(shù)包括:
- max_depth,這個(gè)參數(shù)的取值最好在3-10之間卷哩。
- min_child_weight蛋辈,了葉子節(jié)點(diǎn)中属拾,樣本的權(quán)重之和将谊,如果在一次分裂中,葉子結(jié)點(diǎn)上所有樣本的權(quán)重和小于min_child_weight則停止分裂渐白,能夠有效的防止過(guò)擬合尊浓,防止學(xué)到特殊樣本,默認(rèn)設(shè)置為1纯衍。
- gamma栋齿,繼續(xù)分類(lèi)的損失函數(shù)最小的減少值。 起始值一般比較小襟诸,0~0.2之間就可以瓦堵。
- subsample, colsample_bytree:subsample是構(gòu)建每棵樹(shù)時(shí)對(duì)樣本進(jìn)行采樣的比例,colsample_bytree是構(gòu)建每科樹(shù)是對(duì)樣本特征的進(jìn)行采樣的比例歌亲,典型值的范圍在0.5-0.9之間菇用,設(shè)置得小容易造成欠擬合。
- scale_pos_weight: 用來(lái)解決類(lèi)別不平衡問(wèn)題陷揪,加快收斂(調(diào)整不同樣本的學(xué)習(xí)率)惋鸥,具體原理沒(méi)有研究,所以也不用管悍缠。
- reg_alpha
- reg_lambda
等等卦绣。
2.1.1 初始化參數(shù)
#直接按初始參數(shù)跑基本模型
clf9=xgboost.XGBRegressor(loss_function='RMSE')
clf=model_selection.GridSearchCV(clf9,{'max_depth':np.array([3])},cv=10,n_jobs=-1,scoring='neg_mean_squared_error') #用均方差計(jì)算score
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_train_score']:=%s"%clf.cv_results_['mean_train_score'])
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
ps:雖然cv的scoring如果不設(shè)置默認(rèn)是采用訓(xùn)練模型所采用的score方式,但這里不設(shè)置的話結(jié)果不對(duì)飞蚓,umm滤港。∨颗。可能是xgb的默認(rèn)score不是rmse吧蜗搔。劲藐。。
2.1.2 max_depth 和 min_weight 參數(shù)調(diào)優(yōu)
#粗調(diào)max_depth 和 min_weight
param_test = {
'max_depth':range(1,10,2),
'min_child_weight':range(1,6,2)
}
clf=model_selection.GridSearchCV(clf9,param_test,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_train_score']:=%s"%clf.cv_results_['mean_train_score'])
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print()
print(clf.best_params_)
最優(yōu)結(jié)果基礎(chǔ)上樟凄,拓展范圍進(jìn)行精調(diào)
#精調(diào)max_depth 和 min_weight
param_test = {
'max_depth':[4,5,6],
'min_child_weight':[4,5,6]
}
clf=model_selection.GridSearchCV(clf9,param_test ,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print(clf.best_score_)
print(clf.best_params_)
較原始的0.47178有較好下降聘芜。
2.1.3 gamma參數(shù)調(diào)優(yōu)
#粗調(diào)gamma
#粗調(diào)gamma
param_test = {
'max_depth':np.array([4]),
'min_child_weight':np.array([5]),
'gamma':np.arange(0,0.5,0.1)
}
clf=model_selection.GridSearchCV(clf9,param_test ,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_train_score']:=%s"%clf.cv_results_['mean_train_score'])
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
最優(yōu)結(jié)果是初始化參數(shù),所以不用調(diào)整缝龄。(但為什么結(jié)果又下降了汰现??叔壤?)
2.1.4 調(diào)整subsample 和 colsample_bytree 參數(shù)
#粗調(diào)subsample 和 colsample_bytree
param_test = {
'max_depth':np.array([4]),
'min_child_weight':np.array([5]),
'gamma':np.array([0]),
'subsample':np.arange(0.6,1,0.1),
'colsample_bytree':np.arange(0.6,1,0.1)
}
clf=model_selection.GridSearchCV(clf9,param_test ,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_train_score']:=%s"%clf.cv_results_['mean_train_score'])
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
最優(yōu)參數(shù)在0.9和0.8瞎饲,進(jìn)行精調(diào)
#精調(diào)subsample 和 colsample_bytree
param_test = {
'max_depth':np.array([4]),
'min_child_weight':np.array([5]),
'gamma':np.array([0]),
'subsample':np.arange(0.75,0.86,0.05),
'colsample_bytree':np.arange(0.75,0.86,0.05)
}
clf=model_selection.GridSearchCV(clf9,param_test ,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_train_score']:=%s"%clf.cv_results_['mean_train_score'])
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
精調(diào)尋優(yōu)的結(jié)果是0.75和0.8。(score竟然上漲了炼绘?嗅战?)
2.1.5 正則參數(shù)尋優(yōu)
#粗調(diào)reg_alpha和reg_lambda
param_test = {
'max_depth':np.array([4]),
'min_child_weight':np.array([5]),
'gamma':np.array([0]),
'subsample':np.array([0.8]),
'colsample_bytree':np.array([0.75]),
'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100],
'reg_lambda':[1e-5, 1e-2, 0.1, 1, 100]
}
clf=model_selection.GridSearchCV(clf9,param_test ,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_train_score']:=%s"%clf.cv_results_['mean_train_score'])
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
在1,0.1附近搜索下是否有更好的參數(shù)。
#精調(diào)reg_alpha和reg_lambda
param_test = {
'max_depth':np.array([4]),
'min_child_weight':np.array([5]),
'gamma':np.array([0]),
'subsample':np.array([0.8]),
'colsample_bytree':np.array([0.75]),
'reg_alpha':[0,0.5,1,2,5],
'reg_lambda':[0,0.05,0.1,0.2,0.5]
}
clf=model_selection.GridSearchCV(clf9,param_test ,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_train_score']:=%s"%clf.cv_results_['mean_train_score'])
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
最優(yōu)參數(shù)5俺亮,0.1驮捍。
2.1.6 低學(xué)習(xí)速率、多樹(shù)調(diào)試最終結(jié)果
#調(diào)試最終結(jié)果
param_test = {
'max_depth':np.array([4]),
'min_child_weight':np.array([5]),
'gamma':np.array([0]),
'subsample':np.array([0.8]),
'colsample_bytree':np.array([0.75]),
'reg_alpha':np.array([5]),
'reg_lambda':np.array([0.1]) ,
'learning_rate':np.array([0.01]),
'n_estimators':np.array([5000]),
}
clf9=xgboost.XGBRegressor(loss_function='RMSE')
clf=model_selection.GridSearchCV(clf9,{'max_depth':np.array([3])},cv=10,n_jobs=-1,scoring='neg_mean_squared_error') #用均方差計(jì)算score
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_train_score']:=%s"%clf.cv_results_['mean_train_score'])
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
從數(shù)據(jù)上來(lái)看脚曾,效果確實(shí)提升不少东且。由初始的0.47178降為0.46099。不過(guò)降低學(xué)習(xí)率并且增加樹(shù)的數(shù)量后本讥,模型明顯變慢珊泳,同時(shí)在成績(jī)?nèi)〉蒙线€降低了(可能導(dǎo)致過(guò)擬合,或者說(shuō)本身小幅度的提升或者降低都是很正常的)拷沸,因此這里實(shí)際跑模型并沒(méi)有采用低學(xué)習(xí)率和多數(shù)的結(jié)構(gòu)色查。
# 結(jié)果2
from sklearn import metrics
import xgboost
from sklearn import model_selection
from sklearn.externals import joblib
#=============
#xgboost_modified
#=============
clf_xgboost_modified=xgboost.XGBRegressor(max_depth=4,min_child_weight=5,gamma=0,subsample=0.8,colsample_bytree=0.75,reg_alpha=5,reg_lambda=0.1)
#交叉驗(yàn)證確定準(zhǔn)確率,因?yàn)閷?duì)回歸值會(huì)采用取整操作撞芍,所以不用自帶的交叉驗(yàn)證模型
mes=[]
i=0
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train = X.iloc[train]
y_train = Y.iloc[train]
X_test1 = X.iloc[test]
y_test1 = Y.iloc[test]
clf_xgboost_modified.fit(X_train,y_train)
y_pred=clf_xgboost_modified.predict(X_test1)
e1=metrics.mean_squared_error(y_pred,y_test1)
mes.append(e1)
joblib.dump(clf_xgboost_modified,filename='/Users/ranmo/Desktop/天池/幸福感/xgboost/xgboost_%d.pkl'%i)
y_test=clf_xgboost_modified.predict(X_test)
df2_final=pd.DataFrame({'id':X_test.index,'happiness':y_test}).set_index('id')
df2_final.to_csv('/Users/ranmo/Desktop/天池/幸福感/xgboost/df2_xgboost_%d.csv'%i)
i+=1
print('clf_xgboost_modified:')
print(mes)
print(np.mean(mes))
print()
print()
最佳成績(jī)?yōu)?.47675秧了。
2.2 lightgbm
2.2.1 初始化參數(shù)
默認(rèn)參數(shù):
#直接按初始參數(shù)跑基本模型
clf10=lightgbm.LGBMRegressor(metric='l2') #默認(rèn)default={l2 for regression}
clf=model_selection.GridSearchCV(clf10,{'max_depth':np.array([-1])},cv=10,n_jobs=-1,scoring='neg_mean_squared_error') #用均方差計(jì)算score
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
2.2.2 尋優(yōu)結(jié)果
超參數(shù)搜索本質(zhì)上可以按照xgboost那一套。但涉及到lightGBM自身的優(yōu)化機(jī)制勤庐,有額外的參數(shù)需要設(shè)置:
- max_depth:相互對(duì)應(yīng)
- num_leaves:xgboost里面也有一樣功能的max_leaf_nodes(葉節(jié)點(diǎn)的最大數(shù)目)示惊,但是xgb中兩個(gè)參數(shù)只能二選一(好像是按二叉樹(shù)展開(kāi),所以?xún)烧哂泻愣P(guān)系:n平方)愉镰,因此xgb不用設(shè)定米罚。但是lgbm中因?yàn)樗惴C(jī)制還需要額外進(jìn)行優(yōu)化(優(yōu)化后肯定是小于n平方),所以要配合max_depth同時(shí)設(shè)置num_leaves丈探。
- min_child_samples:葉節(jié)點(diǎn)所需最小樣本數(shù)目录择,xgb沒(méi)有這個(gè)參數(shù)。
- min_child_weight:一樣,葉節(jié)點(diǎn)所需最小樣本權(quán)重隘竭。
- min_split_gain對(duì)應(yīng):一樣塘秦,葉節(jié)點(diǎn)所需最小損失減少。
- subsample:相互對(duì)應(yīng)
- colsample_bytree:相互對(duì)應(yīng)
- subsample_freq:lgbm獨(dú)有的动看,配合subsample進(jìn)行尊剔,是進(jìn)行subsample的頻率,默認(rèn)為1菱皆,即每一次都subsample须误,如果為0,則每次都不進(jìn)行subsample而采用全采樣仇轻,為k則是每k次進(jìn)行一次subsample京痢。
- reg_alpha、reg_lambda篷店、learning_rate祭椰、n_estimators都是通用。
理論上lgbm需要尋優(yōu)的參數(shù)更多疲陕,但每次尋優(yōu)運(yùn)行更快方淤,所以尋有效率還行。鸭轮。
https://www.imooc.com/article/43784?block_id=tuijian_wz
#調(diào)試最終結(jié)果
clf10=lightgbm.LGBMRegressor(metric='l2') #默認(rèn)default={l2 for regression}
param_test = {
'max_depth':np.array([9]),
'min_child_weight':np.array([0.0001]),
'min_split_gain':np.array([0.4]),
'subsample':np.array([0.5]),
'colsample_bytree':np.array([1]),
'reg_alpha':np.array([1e-05]),
'reg_lambda':np.array([0.0001]) ,
'learning_rate':np.array([0.1]),
}
clf=model_selection.GridSearchCV(clf10,param_test,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
# 結(jié)論:{'colsample_bytree': 1, 'learning_rate': 0.1, 'max_depth': 9, 'min_child_weight': 0.0001, 'min_split_gain': 0.4, 'reg_alpha': 1e-05, 'reg_lambda': 0.0001, 'subsample': 0.5}
rmse由0.47728降為0.47000.
用lightgbm優(yōu)化后的模型提交成績(jī)后臣淤,最優(yōu)成績(jī)?yōu)?.48128橄霉。
2.3 gdbt
https://blog.csdn.net/manjhok/article/details/82017696
2.3.1 初始化參數(shù)
默認(rèn)參數(shù):
#=============
#GDBT_modified
#=============
#直接按初始參數(shù)跑基本模型
clf8=ensemble.GradientBoostingRegressor(loss='ls')
clf=model_selection.GridSearchCV(clf8,{'max_depth':np.array([3])},cv=10,n_jobs=-1,scoring='neg_mean_squared_error') #用均方差計(jì)算score
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
2.3.2 尋優(yōu)結(jié)果
超參數(shù)搜索都是差不多的窃爷,名稱(chēng)上有差異。
#調(diào)試最終結(jié)果
clf8=ensemble.GradientBoostingRegressor(loss='ls')
param_test = {
'max_depth':np.array([2]),
'min_weight_fraction_leaf':np.array([0.002]),
'min_impurity_split':np.array([0.0001]),
'subsample':np.array([0.96]),
'max_features':np.array([0.88]),
'n_estimators':np.array([80]),
'learning_rate':np.array([0.2]),
}
clf=model_selection.GridSearchCV(clf8,param_test,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
# 結(jié)論:{'colsample_bytree': 1, 'learning_rate': 0.1, 'max_depth': 9, 'min_child_weight': 0.0001, 'min_split_gain': 0.4, 'reg_alpha': 1e-05, 'reg_lambda': 0.0001, 'subsample': 0.5}
rmse由0.47534降為0.47148.
用gbdt優(yōu)化后的模型提交成績(jī)后姓蜂,最優(yōu)成績(jī)?yōu)?.48317按厘。
2.4 隨機(jī)森林
https://blog.csdn.net/u012559520/article/details/77336098
2.4.1 初始化參數(shù)
#=============
#RandomForest_modified
#=============
#直接按初始參數(shù)跑基本模型
clf7=ensemble.RandomForestRegressor(criterion='mse',n_jobs=-1)
clf=model_selection.GridSearchCV(clf7,{'min_samples_split':np.array([2])},cv=10,n_jobs=-1,scoring='neg_mean_squared_error') #用均方差計(jì)算score
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
2.4.2 尋優(yōu)參數(shù)
#調(diào)試最終結(jié)果
param_test = {
'min_samples_split':np.array([4]),
'min_weight_fraction_leaf':np.array([0.01]),
'min_impurity_decrease':np.array([0]),
'n_estimators':[150],
'max_features':[0.8], #隨機(jī)森林的話這個(gè)不能太高吧
}
clf=model_selection.GridSearchCV(clf7,param_test ,cv=10,n_jobs=-1,scoring='neg_mean_squared_error')
clf.fit(X_train,y_train)
print("clf.cv_results_['mean_test_score']:=%s"%clf.cv_results_['mean_test_score'])
print(clf.best_score_)
print(clf.best_params_)
# 結(jié)論:{'max_features': 0.8, 'min_impurity_decrease': 0, 'min_samples_split': 4, 'min_weight_fraction_leaf': 0.01, 'n_estimators': 150}
rmse由0.53373降為0.48867
用rf優(yōu)化后的模型提交成績(jī)后,最優(yōu)成績(jī)?yōu)?.51088钱慢。
三逮京、模型融合
3.1 平均融合x(chóng)gboost + lightgbm + gdbt現(xiàn)有模型
#平均融合x(chóng)gboost + lightgbm + gdbt現(xiàn)有模型
#交叉驗(yàn)證確定準(zhǔn)確率,因?yàn)閷?duì)回歸值會(huì)采用取整操作束莫,所以不用自帶的交叉驗(yàn)證模型
xgboost_mes=[]
lightgbm_mes=[]
gdbt_mes=[]
mix_mes=[]
i=0
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train1 = X_train.iloc[train]
y_train1 = y_train.iloc[train]
X_test1 = X_train.iloc[test]
y_test1 = y_train.iloc[test]
xgboost=joblib.load(r'C:\Users\sunsharp\Desktop\學(xué)習(xí)\幸福感\(zhòng)xgboost\xgboost_%d.pkl'%i)
lightgbm=joblib.load(r'C:\Users\sunsharp\Desktop\學(xué)習(xí)\幸福感\(zhòng)lightgbm\lightgbm_%d.pkl'%i)
gdbt=joblib.load(r'C:\Users\sunsharp\Desktop\學(xué)習(xí)\幸福感\(zhòng)gdbt\gdbt_%d.pkl'%i)
xgboost_y_pred=xgboost.fit(X_train1,y_train1).predict(X_test1)
lightgbm_y_pred=lightgbm.fit(X_train1,y_train1).predict(X_test1)
gdbt_y_pred=gdbt.fit(X_train1,y_train1).predict(X_test1)
mix_y_pred=(xgboost_y_pred+lightgbm_y_pred+gdbt_y_pred)/3
xgboost_mes.append(metrics.mean_squared_error(xgboost_y_pred,y_test1))
lightgbm_mes.append(metrics.mean_squared_error(lightgbm_y_pred,y_test1))
gdbt_mes.append(metrics.mean_squared_error(gdbt_y_pred,y_test1))
mix_mes.append(metrics.mean_squared_error(mix_y_pred,y_test1))
xgboost_y_test=xgboost.predict(X_test)
lightgbm_y_test=lightgbm.predict(X_test)
gdbt_y_test=gdbt.predict(X_test)
mix_y_test=(xgboost_y_test+lightgbm_y_test+gdbt_y_test)/3
df_mix_final=pd.DataFrame({'id':X_test.index,'happiness':mix_y_test}).set_index('id')
df_mix_final.to_csv(r'C:\Users\sunsharp\Desktop\學(xué)習(xí)\幸福感\(zhòng)mixmodel\df_mix_%d.csv'%i)
i+=1
print('xgboost:')
print(xgboost_mes)
print(np.mean(xgboost_mes))
print()
print('lightgbm:')
print(lightgbm_mes)
print(np.mean(lightgbm_mes))
print()
print('gdbt:')
print(gdbt_mes)
print(np.mean(gdbt_mes))
print()
print('mix:')
print(mix_mes)
print(np.mean(mix_mes))
print()
從訓(xùn)練集結(jié)果上看懒棉,結(jié)果有輕微提升。
用融合模型提交成績(jī)后览绿,最優(yōu)成績(jī)?yōu)?.47104策严。
3.2 線性回歸融合x(chóng)gboost + lightgbm + gdbt
#LR融合x(chóng)gboost + lightgbm + gdbt現(xiàn)有模型
#交叉驗(yàn)證確定準(zhǔn)確率,因?yàn)閷?duì)回歸值會(huì)采用取整操作饿敲,所以不用自帶的交叉驗(yàn)證模型
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn import model_selection
from sklearn.externals import joblib
from sklearn import metrics
import lightgbm
#lighgbm防報(bào)錯(cuò)
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import xgboost
from sklearn import ensemble
from sklearn import linear_model
xgboost_mes=[]
lightgbm_mes=[]
gdbt_mes=[]
lrmix_mes=[]
i=0
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train1 = X_train.iloc[train]
y_train1 = y_train.iloc[train]
X_test1 = X_train.iloc[test]
y_test1 = y_train.iloc[test]
print(i)
xgboost=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/xgboost/xgboost_%d.pkl'%i)
lightgbm=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/lightgbm/lightgbm_%d.pkl'%i)
gdbt=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/gdbt/gdbt_%d.pkl'%i)
xgboost_y_pred=xgboost.fit(X_train1,y_train1).predict(X_test1)
lightgbm_y_pred=lightgbm.fit(X_train1,y_train1).predict(X_test1)
gdbt_y_pred=gdbt.fit(X_train1,y_train1).predict(X_test1)
#訓(xùn)練融合模型
a=xgboost.fit(X_train1,y_train1).predict(X_train1)
b=lightgbm.fit(X_train1,y_train1).predict(X_train1)
c=gdbt.fit(X_train1,y_train1).predict(X_train1)
lr_mix=linear_model.LinearRegression().fit(np.array([a,b,c]).T,y_train1)
lrmix_y_pred=lr_mix.predict(np.array([xgboost_y_pred,lightgbm_y_pred,gdbt_y_pred]).T)
xgboost_mes.append(metrics.mean_squared_error(xgboost_y_pred,y_test1))
lightgbm_mes.append(metrics.mean_squared_error(lightgbm_y_pred,y_test1))
gdbt_mes.append(metrics.mean_squared_error(gdbt_y_pred,y_test1))
lrmix_mes.append(metrics.mean_squared_error(lrmix_y_pred,y_test1))
xgboost_y_test=xgboost.predict(X_test)
lightgbm_y_test=lightgbm.predict(X_test)
gdbt_y_test=gdbt.predict(X_test)
lrmix_y_test=lr_mix.predict(np.array([xgboost_y_test,lightgbm_y_test,gdbt_y_test]).T)
df_lrmix_final=pd.DataFrame({'id':X_test.index,'happiness':lrmix_y_test}).set_index('id')
df_lrmix_final.to_csv(r'/Users/ranmo/Desktop/天池/幸福感/lrmixmodel/df_lrmix_%d.csv'%i)
i+=1
print('xgboost:')
print(xgboost_mes)
print(np.mean(xgboost_mes))
print()
print('lightgbm:')
print(lightgbm_mes)
print(np.mean(lightgbm_mes))
print()
print('gdbt:')
print(gdbt_mes)
print(np.mean(gdbt_mes))
print()
print('lrmix:')
print(mix_mes)
print(np.mean(lrmix_mes))
print()
效果不是很理想妻导。不理想的原因是因?yàn)閷?duì)訓(xùn)練集再做回歸融合(訓(xùn)練集的成績(jī)能夠達(dá)到0.15),雖然能夠提升訓(xùn)練集模型精度,但是是過(guò)擬合倔韭,然后在測(cè)試集中就不能取得很好的效果术浪。。寿酌。
3.3 加權(quán)融合x(chóng)gboost + lightgbm + gdbt
因?yàn)槠骄诤闲Ч靡人眨貧w融合過(guò)擬合,但是查看了回歸模型的系數(shù)醇疼,和比較接近于1碟联,因此考慮將三者模型進(jìn)行加權(quán)融合(權(quán)重和為1)。
a=np.arange(0,1.1,0.05)
b=np.arange(0,1.1,0.05)
c=np.arange(0,1.1,0.05)
coef_list=[]
for i in a:
for j in b:
for k in c:
if i+j+k==1:
coef_list.append([i,j,k])
#加權(quán)融合x(chóng)gboost + lightgbm + gdbt現(xiàn)有模型
#交叉驗(yàn)證確定準(zhǔn)確率僵腺,因?yàn)閷?duì)回歸值會(huì)采用取整操作鲤孵,所以不用自帶的交叉驗(yàn)證模型
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn import model_selection
from sklearn.externals import joblib
from sklearn import metrics
import lightgbm
#lighgbm防報(bào)錯(cuò)
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import xgboost
from sklearn import ensemble
xgboost_mes=[]
lightgbm_mes=[]
gdbt_mes=[]
weightmix_mes=[]
i=0
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train1 = X_train.iloc[train]
y_train1 = y_train.iloc[train]
X_test1 = X_train.iloc[test]
y_test1 = y_train.iloc[test]
print(i)
xgboost=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/xgboost/xgboost_%d.pkl'%i)
lightgbm=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/lightgbm/lightgbm_%d.pkl'%i)
gdbt=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/gdbt/gdbt_%d.pkl'%i)
xgboost_y_pred=xgboost.fit(X_train1,y_train1).predict(X_test1)
lightgbm_y_pred=lightgbm.fit(X_train1,y_train1).predict(X_test1)
gdbt_y_pred=gdbt.fit(X_train1,y_train1).predict(X_test1)
#訓(xùn)練融合模型
error_list=[]
for coef_i in coef_list:
error_list.append(metrics.mean_squared_error(np.dot(np.array([xgboost_y_pred,lightgbm_y_pred,gdbt_y_pred]).T,coef_i),y_test1))
coef=temp[np.argmin(error_list)]
xgboost_mes.append(metrics.mean_squared_error(xgboost_y_pred,y_test1))
lightgbm_mes.append(metrics.mean_squared_error(lightgbm_y_pred,y_test1))
gdbt_mes.append(metrics.mean_squared_error(gdbt_y_pred,y_test1))
weightmix_mes.append(min(error_list))
xgboost_y_test=xgboost.predict(X_test)
lightgbm_y_test=lightgbm.predict(X_test)
gdbt_y_test=gdbt.predict(X_test)
weightmix_y_test=np.dot(np.array([xgboost_y_test,lightgbm_y_test,gdbt_y_test]).T,coef)
df_weightmix_final=pd.DataFrame({'id':X_test.index,'happiness':weightmix_y_test}).set_index('id')
df_weightmix_final.to_csv(r'/Users/ranmo/Desktop/天池/幸福感/weightmixmodel/df_weightmix_%d.csv'%i)
i+=1
print('xgboost:')
print(xgboost_mes)
print(np.mean(xgboost_mes))
print()
print('lightgbm:')
print(lightgbm_mes)
print(np.mean(lightgbm_mes))
print()
print('gdbt:')
print(gdbt_mes)
print(np.mean(gdbt_mes))
print()
print('weightmix:')
print(weightmix_mes)
print(np.mean(weightmix_mes))
print()
模型結(jié)果有輕微提升。實(shí)際最優(yōu)成績(jī)?yōu)?.47531辰如。
3.4 神經(jīng)網(wǎng)絡(luò)融合x(chóng)gboost + lightgbm + gdbt
#神經(jīng)網(wǎng)絡(luò)融合x(chóng)gboost + lightgbm + gdbt現(xiàn)有模型
#交叉驗(yàn)證確定準(zhǔn)確率普监,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn import model_selection
from sklearn.externals import joblib
from sklearn import metrics
import lightgbm
#lighgbm防報(bào)錯(cuò)
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import xgboost
from sklearn import ensemble
from sklearn import neural_network
xgboost_mes=[]
lightgbm_mes=[]
gdbt_mes=[]
MLPmix_mes=[]
i=0
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X):
X_train1 = X_train.iloc[train]
y_train1 = y_train.iloc[train]
X_test1 = X_train.iloc[test]
y_test1 = y_train.iloc[test]
print(i)
xgboost=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/xgboost/xgboost_%d.pkl'%i)
lightgbm=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/lightgbm/lightgbm_%d.pkl'%i)
gdbt=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/gdbt/gdbt_%d.pkl'%i)
xgboost_y_pred=xgboost.fit(X_train1,y_train1).predict(X_test1)
lightgbm_y_pred=lightgbm.fit(X_train1,y_train1).predict(X_test1)
gdbt_y_pred=gdbt.fit(X_train1,y_train1).predict(X_test1)
#訓(xùn)練融合模型
a=xgboost.fit(X_train1,y_train1).predict(X_train1)
b=lightgbm.fit(X_train1,y_train1).predict(X_train1)
c=gdbt.fit(X_train1,y_train1).predict(X_train1)
MLP_mix=neural_network.MLPClassifier(hidden_layer_sizes=(5,3,2),activation='logistic').fit(np.array([a,b,c]).T,y_train1)
MLPmix_y_pred=MLP_mix.predict(np.array([xgboost_y_pred,lightgbm_y_pred,gdbt_y_pred]).T)
xgboost_mes.append(metrics.mean_squared_error(xgboost_y_pred,y_test1))
lightgbm_mes.append(metrics.mean_squared_error(lightgbm_y_pred,y_test1))
gdbt_mes.append(metrics.mean_squared_error(gdbt_y_pred,y_test1))
MLPmix_mes.append(metrics.mean_squared_error(MLPmix_y_pred,y_test1))
xgboost_y_test=xgboost.predict(X_test)
lightgbm_y_test=lightgbm.predict(X_test)
gdbt_y_test=gdbt.predict(X_test)
MLPmix_y_test=MLP_mix.predict(np.array([xgboost_y_test,lightgbm_y_test,gdbt_y_test]).T)
df_MLPmix_final=pd.DataFrame({'id':X_test.index,'happiness':MLPmix_y_test}).set_index('id')
df_MLPmix_final.to_csv(r'/Users/ranmo/Desktop/天池/幸福感/MLPmixmodel/df_MLPmix_%d.csv'%i)
i+=1
print('xgboost:')
print(xgboost_mes)
print(np.mean(xgboost_mes))
print()
print('lightgbm:')
print(lightgbm_mes)
print(np.mean(lightgbm_mes))
print()
print('gdbt:')
print(gdbt_mes)
print(np.mean(gdbt_mes))
print()
print('MLPmix:')
print(mix_mes)
print(np.mean(MLPmix_mes))
print()
效果也不理想琉兜。
四凯正、簡(jiǎn)單特征工程
本來(lái)這部分工作應(yīng)該是在建模之前做的,但是現(xiàn)在的集成算法已經(jīng)能夠很好地尋找重要特征豌蟋,并且減小非重要特征的權(quán)重廊散,所以大大減少了尋找特征工程的工作量。但是另一方面梧疲,要尋找好的特征工程并快速提高模型精度是很費(fèi)精力的部分允睹,所以限于此,先跑的模型幌氮,并基于模型給出來(lái)的特征重要性缭受,適當(dāng)進(jìn)行開(kāi)展特征工程。
4.1 去除不重要的特征
從集中學(xué)習(xí)模型給出的特征重要度來(lái)看该互,不重要的特征主要是:
- edu_other:考慮去除edu_other
- invest和invest_other:考慮去除inverst全部項(xiàng)和invest_other
- property和property_other:考慮去除property_other
- s_work_type:考慮去除s_work_type
4.1.1 低方差
np.var(X_train)[np.var(X_train)<=np.percentile(np.var(X_train),20)]
可以看到米者,方差小于0.1的特征項(xiàng):
- edu_other
- property_0、property_3~property_7
- invest_0~invest_8
之后會(huì)移除這部分特征項(xiàng)
4.1.2 卡方校驗(yàn)
卡方校驗(yàn)的時(shí)候發(fā)現(xiàn)出現(xiàn)非正定矩陣無(wú)法校驗(yàn)宇智,進(jìn)一步檢驗(yàn)發(fā)現(xiàn)數(shù)據(jù)項(xiàng)中有很多負(fù)值部分:
所以其實(shí)原始數(shù)據(jù)中有錯(cuò)誤數(shù)據(jù)蔓搞,并且在建模前就應(yīng)該處理。
這里將負(fù)值都處理為該特征項(xiàng)的眾數(shù)随橘,并進(jìn)行卡方校驗(yàn)喂分。
X_train_new=X_train
#負(fù)值處理為眾數(shù)
dict_temp={}
for i in X_train_new.columns:
dict_temp[i]=X_train_new[i].value_counts().index[0]
for i in dict_temp.keys():
X_train_new[i][X_train_new[i]<0]=dict_temp[i]
#處理完之后竟然還有負(fù)值,那就直接處理為其絕對(duì)值
X_train_new=np.abs(X_train_new)
p_value=feature_selection.chi2(X_train_new,y_train)[1]
p_value[np.isnan(p_value)]=0 #有0值
#看一下特征重要程度排序
import matplotlib.pyplot as plt
%matplotlib inline
temp=np.argsort(-p_value) #返回index
p_value=list(p_value)
p_value=np.sort(p_value)
b=[]
for i in temp:
b.append(X_train_new.columns[i])
plt.figure(figsize=(10,40))
plt.grid()
plt.barh(b,p_value,)
可以看到太防,與目標(biāo)變量密切相關(guān)的主要是:
- income收入部分妻顶;
- marital婚姻情況酸员;
- 自己以及父母的出生年份;
- public_service對(duì)公共服務(wù)的滿(mǎn)意度等等讳嘱;
而前文提到的edu_other幔嗦、property_0、property_3property_7沥潭、invest_0invest_8基本上屬于無(wú)關(guān)變量邀泉,唯一的特例是invest_6的p值較高,但是這里仍然進(jìn)行移除钝鸽。
4.2 修正模型
##最后一次平均融合
#平均融合x(chóng)gboost + lightgbm + gdbt現(xiàn)有模型
#交叉驗(yàn)證確定準(zhǔn)確率汇恤,因?yàn)閷?duì)回歸值會(huì)采用取整操作,所以不用自帶的交叉驗(yàn)證模型
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn import model_selection
from sklearn.externals import joblib
from sklearn import metrics
import lightgbm
#lighgbm防報(bào)錯(cuò)
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import xgboost
from sklearn import ensemble
xgboost_mes=[]
lightgbm_mes=[]
gdbt_mes=[]
mix_mes=[]
i=0
kf=model_selection.KFold(10,shuffle=True)
for train,test in kf.split(X_train_new):
X_train1 = X_train_new.iloc[train]
y_train1 = y_train.iloc[train]
X_test1 = X_train_new.iloc[test]
y_test1 = y_train.iloc[test]
print(i)
xgboost=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/feature/xgboost/xgboost_%d.pkl'%i)
lightgbm=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/feature/lightgbm/lightgbm_%d.pkl'%i)
gdbt=joblib.load(r'/Users/ranmo/Desktop/天池/幸福感/feature/gdbt/gdbt_%d.pkl'%i)
xgboost_y_pred=xgboost.fit(X_train1,y_train1).predict(X_test1)
lightgbm_y_pred=lightgbm.fit(X_train1,y_train1).predict(X_test1)
gdbt_y_pred=gdbt.fit(X_train1,y_train1).predict(X_test1)
mix_y_pred=(xgboost_y_pred+lightgbm_y_pred+gdbt_y_pred)/3
xgboost_mes.append(metrics.mean_squared_error(xgboost_y_pred,y_test1))
lightgbm_mes.append(metrics.mean_squared_error(lightgbm_y_pred,y_test1))
gdbt_mes.append(metrics.mean_squared_error(gdbt_y_pred,y_test1))
mix_mes.append(metrics.mean_squared_error(mix_y_pred,y_test1))
xgboost_y_test=xgboost.predict(X_test_new)
lightgbm_y_test=lightgbm.predict(X_test_new)
gdbt_y_test=gdbt.predict(X_test_new)
mix_y_test=(xgboost_y_test+lightgbm_y_test+gdbt_y_test)/3
df_mix_final=pd.DataFrame({'id':X_test.index,'happiness':mix_y_test}).set_index('id')
df_mix_final.to_csv(r'/Users/ranmo/Desktop/天池/幸福感/feature/mixmodel/df_mix_%d.csv'%i)
i+=1
print('xgboost:')
print(xgboost_mes)
print(np.mean(xgboost_mes))
print()
print('lightgbm:')
print(lightgbm_mes)
print(np.mean(lightgbm_mes))
print()
print('gdbt:')
print(gdbt_mes)
print(np.mean(gdbt_mes))
print()
print('mix:')
print(mix_mes)
print(np.mean(mix_mes))
print()
從結(jié)果上看拔恰,經(jīng)過(guò)簡(jiǎn)單特征工程處理的模型和原有模型能夠達(dá)到的最優(yōu)結(jié)果是差不多的因谎,所以確實(shí)是因?yàn)榧伤惴ㄒ呀?jīng)能夠很好地處理特征了。颜懊。
最后用隨機(jī)種子嘗試了最終的優(yōu)化(在模型穩(wěn)定的基礎(chǔ)上并無(wú)太大意義财岔,只是看分?jǐn)?shù)能不能高一點(diǎn)而已),baseline為0.47098河爹。
over匠璧。