情感模型

Problem Analysis

The problem is that users say a sentence include some emotion and in corresponding our model need to produce several sentences to respond the user from different emotional angle.First we need to analysis or know the emotion of the user's question.And second we can return proper words.For example, one says "What a lovely day." and we can say "Haha, so happy today." in response.As the problem is unfamiliar to us in a degree, we need to search some papers and do some analysis, in the end we will cite the papers we read.

High-Level System Design

1 Related work

1.1Emotional Intelligence

In interactions between humans and artificial agents, the capability to detect signs of human emotions and to suitably react to them can enrich communication.

1.2 Large-scale Sequence-to-sequence BasedConversation Generation

Lots of works have been done to?improve the content quality generation.Here we use some to?generate responses both relevant in content and coherent in emotion.

1.3 Memory-based Networks

We can adopt a dynamic memory to model the change of an internal emotion state, and a static memory to store a dictionary of emotion words in our model.

2 High-Level System Design

We want to train several independent networks ,which are used to deal with different emotional? questions, such as happiness and anger .

2.1 Introduction of frame diagram?

ECM model

As shown in the overall framework of the model, the user's problem is entered as "What a lovely day!", which is encoded as a hidden vector by Encoder, and then the implicit vector of the problem is enhanced by the attention mechanism, which is combined with the state vector s of decoder to generate different words, and the information selectivity of the different parts of H is enhanced by the implicit vector of the problem and then get the vector c.The emotion category is designated as "Happiness". After indexing, we get the emotion category embedding vector, the initial emotion state memory vector and the corresponding emotion word list.Decoder accepts the problem vector c through the attention mechanism, the emotion category embedding vector and the initial emotional state memory vector as input, and then generates the generation probability o of the next word through recurrent neural network, then passes the emotional word list to the weighting of the emotion word and the non emotion word.Finally we obtain the generation probability of the final word by sampling. You can get the output "Haha, so happy today!"

2.2 Emotion Category Embedding

Here are some brief introductions.We?initialize one vector for each emotion category, and then?learn the emotion category representations through training.

2.3 Internal Memory

we design an internal memory module to approach the emotion dynamics during decoding.


Data flow of the decoder with an internal memory.

2.4?External Memory

we use an external memory model to model emotion expressions explicitly by assigning different generation probabilities to emotion?words and generic words.


Data flow of the decoder with an external memory.?

2.5 Loss Function

We can get the the loss function later, when we will analysis all the aspects about loss.And then we can write or proposal some methods to lower the loss.??

Expected Goal

We want to train a model to produce proper respond with users's question include some emotion , get a loss function and find some ways to lower the loss.

Schedule and Human Allocation(in Chinese)

組長:胡欽濤

組員:吳行屈糊、劉章杰搭盾、湯敏芳、許彥夫

人員安排:

吳行?胡欽濤?許彥夫 for coding,劉章杰 湯敏芳 for files

進度安排:

第5-7周:論文查詢兄裂、模型可行性分析及確定

第8-9周:數(shù)據(jù)集收集標記

第9-11周:模型訓(xùn)練,調(diào)參

第11-12周:結(jié)果分析幌衣,撰寫報告

Appendix

Affect-LM:A Neural Language Model for Customizable Affective Text Generation

Affective Neural Response Generation

Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末雪侥,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子肩刃,更是在濱河造成了極大的恐慌祟霍,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,651評論 6 501
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件盈包,死亡現(xiàn)場離奇詭異沸呐,居然都是意外死亡,警方通過查閱死者的電腦和手機崭添,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,468評論 3 392
  • 文/潘曉璐 我一進店門叛氨,熙熙樓的掌柜王于貴愁眉苦臉地迎上來呼渣,“玉大人寞埠,你說我怎么就攤上這事屁置。” “怎么了仁连?”我有些...
    開封第一講書人閱讀 162,931評論 0 353
  • 文/不壞的土叔 我叫張陵蓝角,是天一觀的道長怖糊。 經(jīng)常有香客問我,道長伍伤,這世上最難降的妖魔是什么并徘? 我笑而不...
    開封第一講書人閱讀 58,218評論 1 292
  • 正文 為了忘掉前任,我火速辦了婚禮扰魂,結(jié)果婚禮上麦乞,老公的妹妹穿的比我還像新娘。我一直安慰自己姐直,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 67,234評論 6 388
  • 文/花漫 我一把揭開白布声畏。 她就那樣靜靜地躺著,像睡著了一般插龄。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上均牢,一...
    開封第一講書人閱讀 51,198評論 1 299
  • 那天,我揣著相機與錄音徘跪,去河邊找鬼。 笑死垮庐,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的突硝。 我是一名探鬼主播,決...
    沈念sama閱讀 40,084評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼浙于!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起羞酗,我...
    開封第一講書人閱讀 38,926評論 0 274
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎胸竞,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體卫枝,經(jīng)...
    沈念sama閱讀 45,341評論 1 311
  • 正文 獨居荒郊野嶺守林人離奇死亡讹挎,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,563評論 2 333
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了筒溃。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片马篮。...
    茶點故事閱讀 39,731評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖怜奖,靈堂內(nèi)的尸體忽然破棺而出浑测,到底是詐尸還是另有隱情,我是刑警寧澤迁央,帶...
    沈念sama閱讀 35,430評論 5 343
  • 正文 年R本政府宣布,位于F島的核電站漱贱,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏幅狮。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,036評論 3 326
  • 文/蒙蒙 一擎值、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧鸠儿,春花似錦、人聲如沸进每。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,676評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽国葬。三九已至,卻和暖如春汇四,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背通孽。 一陣腳步聲響...
    開封第一講書人閱讀 32,829評論 1 269
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留挨厚,地道東北人。 一個月前我還...
    沈念sama閱讀 47,743評論 2 368
  • 正文 我出身青樓疫剃,卻偏偏與公主長得像硼讽,于是被迫代替她去往敵國和親巢价。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 44,629評論 2 354

推薦閱讀更多精彩內(nèi)容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi閱讀 7,322評論 0 10
  • 13上課時間在學(xué)校逛是件很刺激的事城菊,加上我是有目標的閑逛碉克,所以更要集中注意力,這很累漏麦。我站在辦公室外假裝路過,眼睛...
    牧__樵閱讀 226評論 0 1
  • 大家開車在高速上行駛的時候一定會有一個奇特的感受——“飄” 如果你并沒有這種感受目胡,那么恭喜你,你的愛車很“穩(wěn)”讶隐。 ...
    塑如意生活閱讀 280評論 0 0
  • 香煙與愛情 文/萬年 借一輪紅日 點燃 孤獨和寂寞 這世界只屬于 傻傻我 愛 并沒有對與錯 給我陽光和溫暖 你來 ...
    七哥詩心閱讀 1,199評論 0 0