2019-10-07-文獻(xiàn)解讀(一)

題目:《綜合單細(xì)胞異質(zhì)性分析方法來定義人類心臟核心轉(zhuǎn)錄因子層次結(jié)構(gòu)》

截止2019-10月引用率6次亏钩!

摘要

誘導(dǎo)人多能干細(xì)胞分化為心肌細(xì)胞(hiPSC-CMs)的技術(shù)已成為相關(guān)疾病建模和治療測試的有力工具镀裤。然而崭庸,由于不成熟和異質(zhì)性的的存在使得推廣仍然受到的限制智厌。為了闡明這種異質(zhì)性的原因虚茶,作者在hiPSC心肌誘導(dǎo)分化和成人心臟組織細(xì)胞中應(yīng)用了單細(xì)胞轉(zhuǎn)錄組和常規(guī)轉(zhuǎn)錄組測序技術(shù)讨阻。通過整合及拼接數(shù)據(jù)等分析料按,觀察到了超過六個(gè)的不同單細(xì)胞亞群,其中幾群細(xì)胞在分化的某個(gè)時(shí)間點(diǎn)(第30天不同)被重復(fù)觀測到瞬内。為了剖析與每個(gè)細(xì)胞群相關(guān)的不同心臟核心轉(zhuǎn)錄因子的調(diào)控作用迷雪,本文使用了single-cell 和 bulk RNA-seq、CRISPR技術(shù)虫蝶、ChIP-seq章咧,同時(shí)配合電生理、鈣成像和CyTOF分析檢測到三個(gè)轉(zhuǎn)錄因子(NR2F2能真、TBX5和HEY2)的上調(diào)或下調(diào)產(chǎn)生的影響赁严。匯總這些靶標(biāo)扰柠、數(shù)據(jù)和基因組分析方法為理解體外細(xì)胞異質(zhì)性提供了一個(gè)強(qiáng)大的平臺(tái)。

首先是樣品疼约,建庫測序卤档,RNA-seq上游分析概況

樣品來源
  • Two hiPSC lines were obtained from the Stanford Cardiovascular Institute biobank (CVI0076, CVI0059). CVI0059 was processed for single cell RNA-seq at day 5, day 14, and day 45 of the cardiomyocyte differentiation protocol using the 10X Genomics single-cell RNA-seq v1 kit.CVI0076 was processed for single cell RNA-seq at day 0, day 5, day 14, and day 45 use v2 kit.
  • Libraries were quantified using Bioanalyzer (Agilent) and qPCR (KAPA) analysis. Libraries were sequenced on the NextSeq 500 (Illumina).
  • Unsupervised cell population discovery analyses were performed with Seurat-CCA and the software ICGS available in AltAnalyze version 2.1.1 (http://www.altanalyze.org)
  • For these analyses, only protein-coding genes were considered, applying a correlation cutoff of 0.3 and Euclidean column HOPACH clustering. Associated t-SNE visualizations were obtained in AltAnalyze using ICGS obtained dynamically regulated genes.
  • ERCC spike-ins were included for further evaluation of sample quality.
  • libraries were pooled and sequenced using Illumina’s HiSeq 2000 using 2 × 100 paired-end sequencing (Macrogen, South Korea)
  • Filtered reads were aligned to the reference genome hg19 using STAR
  • Using STAR BAM files, AltAnalyze was used to generate exon read counts for gene expression analysis and junction read counts for splicing analysis
  • All retained single-cell libraries were required to have a minimum of 1 million uniquely aligning paired-end fragments and > 40% aligned fragments, based on STAR analysis. The retained libraries had an average of ~3 million aligned fragments.
  • To calculate RPKM values for each gene, AltAnalyze was run on the junction and exon BED files using default settings
  • To identify discrete cell states, unsupervised clustering was initially performed to define predominant populations (ICGS module of AltAnalyze, Pearson correlation coefficient > 0.4).
  • Although this analysis identified three initial populations, we augmented these results using a supervised analysis of cardiac transcription factors from our 10X Genomics identified using the ICGS supervised correlation option.
  • In agreement with our Fluidigim C1 microscopy analyses, no gene expression signatures with evident “doublet cell” profiles (more than one cell population signature) were discerned from this analysis.
  • Furthermore, ERCC spike-in expression (ERCC92.fa, Kallisto TPM) ratios indicated single-cell transcriptome profiles were being assessed.
  • the MarkerFinder algorithm in AltAnalyze was run to identify additional genes with population- restricted expression profiles (Pearson correlation coefficient > 0.4).
  • Additional differentiations were performed on NR2F2GE1 (N = 2), TBX5GE1 (N = 2), HEY2GE1 (N = 2), NR2F2GE2 (N = 4), TBX5GE2 (N = 3), and HEY2GE2 (N = 2) lines and sequenced using Illumina’s HiSeq 4000 2 × 150 paired end sequencing (Novogene).
  • Pseudotemporal ordering of these cells with the software Monocle designated SF1-expressing cardiomyocytes as the “earliest” population and HOPX as the latest, suggesting that cardiomyocyte subpopulations underlie distinct cardiac maturation states
  • Data availability
    GSE81585;
    10x Genomics synapse ID: syn7818379.

然后是質(zhì)量控制情況,最后的表達(dá)矩陣是多少個(gè)基因多少個(gè)細(xì)胞

  • 200 hiPSC-CMs at day 30 were run throuth Fluidigm C1 microfluidic chip to capture single hiPSC-CMs (site 8shown) and processed for single-cell RNA-seq.
  • Cells were labeled using a viability dye(Calcein-AM) to ensure RNA for live cells were processed. IHC TNNT2,MYL2,ACTC1,MYL7 marker
  • 54 hiPSC-CMs were successfully sequenced which expressed cardiac markers
  • single cell 10X genomics RNA-seq clusters called transcription factor and GO terms related to cardiac developmental progression
  • Monocle applied to single- cell RNA-seq was used to identify a pseudotime progression of different populations of hiPSC-CMs in relation to each other.

接著介紹作者是如何挑選重要的基因和降維

  • To visualize and interpret the high- dimensional dataset generated, we applied the t-SNE algorithm based on seven cardiac markers preselected for the dataset, in which individual cells in the high-dimensional space were pro- jected onto a two-dimensional map but their neighboring rela- tionship was preserved.


    Heatmap of gene markers specific for each day of differentiation. Selected cardiac specific genes are overlaid in the right panel.

降維后的聚類以及對每個(gè)類的注釋

tSNE聚類后注釋

與bulk RNA 測序得到的 基因marker進(jìn)行重新注釋分組

Single cells from day 30 of differentiation were profiled using an independent technology (Fluidigm C1) to resolve coincident mid-to-late state differentiation heterogeneity.
PCA聚類Single-cell population-specific genes(ICGS/MarkerFinder) and expression profiles were used to populate the LineageProfiler signature database

Evaluation of single-cell population heterogeneity among replicate bulk time-course samples is preformed using K-nearest neghbor-based classification of bulk RNA-seq time-course samples with the software LineageProfiler

Overlay of tSNE maps of cardiomyocytes derived from hESCs undergoing cardiac differentiation from day 8 to day 18 to day 30.Each point represents a single cell, and different colors represent samples from different colors represent samples from different time points.

An extended panel of relevant cardiac marker expression patterns.cells are colored based on the intensity of expression of the indicated markers. Higher expression of MLC2A was noted throughout each time point of differentiation, whereas high levels of MLC2V could only be observed at day 30

Bulk RNA seq: RNA-seq expression from each day of differentiation was analyzed for transcription factors demonstration a greater than two-fold change in expression from each day. A two-fold increase in expression was denoted as the start of transcription factor expression, whereas the corresponding two-fold decrease in expression was denoted as acessation of expression.

類的下游分析(差異分析或者實(shí)驗(yàn)驗(yàn)證等)

Chip-seq 驗(yàn)證 marker基因
類的差異基因分析
  • Given that our single-cell RNA-seq of the wildtype and genome-edited lines suggested that NR2F2, TBX5, and HEY2 can regulate atrial-like and ventricular-like signatures, we next quantified the expression of these transcription factors within the adult heart
  • RNA-seq of the human atria confirmed that NR2F2 and TBX5 are specifically enriched within the atria, and HEY2 is highly enriched within the ventricle.(Supplementary Fig. 5E).
  • RNA-seq quantification demonstrated that MYL2 is highly expressed within ventricular tissue, while MYL7 is enriched within atrial tissue(Supplementary Fig. 5F).
  • differentiating hiPSC-CMs reveals that MYL2 is only observed at later differentiation time points (e.g. day 30 and day 90) (Supplementary Fig. 5G).


    supFigure5

總結(jié)一下

  • 本文作者通過對human embryonic stem cell-derived cardiomyocytes (hESC-CMs) 以及 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC- CMs)取不同時(shí)間點(diǎn)及相應(yīng)的轉(zhuǎn)錄因子上調(diào)下調(diào)表達(dá)后選取特定時(shí)間的樣本進(jìn)行single-cell 和 bulk RNA-seq的分析程剥,確定了由不同基因表達(dá)譜富集的hiPSC-CM的亞種群劝枣。意義是由于心肌細(xì)胞的再生性差,損傷修復(fù)較困難织鲸,而且受損后嚴(yán)重危害人群健康舔腾,科學(xué)家們研究了hiPSC- CMs來治療心肌損傷,但是hiPSC- CMs自身的混雜導(dǎo)致了預(yù)后的異質(zhì)性搂擦,因此本文用單細(xì)胞測序的技術(shù)找到這個(gè)混雜的干細(xì)胞分化的的心肌細(xì)胞的特殊分化時(shí)期亞型所高表達(dá)的細(xì)胞標(biāo)記基因稳诚,從而實(shí)現(xiàn)分類富集相應(yīng)的亞群的心肌細(xì)胞,降低混雜差異提高治療效果非常值得期待瀑踢。
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末扳还,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子丘损,更是在濱河造成了極大的恐慌普办,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,591評(píng)論 6 501
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件徘钥,死亡現(xiàn)場離奇詭異衔蹲,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)呈础,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,448評(píng)論 3 392
  • 文/潘曉璐 我一進(jìn)店門舆驶,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人而钞,你說我怎么就攤上這事沙廉。” “怎么了臼节?”我有些...
    開封第一講書人閱讀 162,823評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵撬陵,是天一觀的道長。 經(jīng)常有香客問我网缝,道長巨税,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,204評(píng)論 1 292
  • 正文 為了忘掉前任粉臊,我火速辦了婚禮草添,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘扼仲。我一直安慰自己远寸,他們只是感情好抄淑,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,228評(píng)論 6 388
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著驰后,像睡著了一般肆资。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上倡怎,一...
    開封第一講書人閱讀 51,190評(píng)論 1 299
  • 那天迅耘,我揣著相機(jī)與錄音贱枣,去河邊找鬼监署。 笑死,一個(gè)胖子當(dāng)著我的面吹牛纽哥,可吹牛的內(nèi)容都是我干的钠乏。 我是一名探鬼主播,決...
    沈念sama閱讀 40,078評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼春塌,長吁一口氣:“原來是場噩夢啊……” “哼晓避!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起只壳,我...
    開封第一講書人閱讀 38,923評(píng)論 0 274
  • 序言:老撾萬榮一對情侶失蹤俏拱,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后吼句,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體锅必,經(jīng)...
    沈念sama閱讀 45,334評(píng)論 1 310
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,550評(píng)論 2 333
  • 正文 我和宋清朗相戀三年惕艳,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了搞隐。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,727評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡远搪,死狀恐怖劣纲,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情谁鳍,我是刑警寧澤癞季,帶...
    沈念sama閱讀 35,428評(píng)論 5 343
  • 正文 年R本政府宣布,位于F島的核電站倘潜,受9級(jí)特大地震影響绷柒,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜窍荧,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,022評(píng)論 3 326
  • 文/蒙蒙 一辉巡、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧蕊退,春花似錦郊楣、人聲如沸憔恳。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,672評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽钥组。三九已至,卻和暖如春今瀑,著一層夾襖步出監(jiān)牢的瞬間程梦,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,826評(píng)論 1 269
  • 我被黑心中介騙來泰國打工橘荠, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留屿附,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 47,734評(píng)論 2 368
  • 正文 我出身青樓哥童,卻偏偏與公主長得像挺份,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個(gè)殘疾皇子贮懈,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,619評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容