import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.set_random_seed(1)
#導(dǎo)入數(shù)據(jù)
mnist = input_data.read_data_sets('E:/Program Files/Machine Learning/node/MNIST_data',one_hot = True)
#hyperparameters
lr = 0.001 #學(xué)習(xí)率
training_iters = 100000
batch_size = 128
n_inputs = 28
n_steps = 28
n_hidden_units = 128
n_classes = 10
#定義x,y的placeholder和weights,biases的初始狀況
x = tf.placeholder(tf.float32,[None,n_steps,n_inputs])
y = tf.placeholder(tf.float32,[None,n_classes])
#對weights biases初始化的定義
weight = {
#shape (28,128)
'in':tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
#shape (128,10)
'out':tf.Variable(tf.random_normal([n_hidden_units,n_classes]))
}
biases = {
#shape (128,)
'in':tf.Variable(tf.constant(0.1,shape=[n_hidden_units,])),
#shape (128,10)
'out':tf.Variable(tf.constant(0.1,shape=[n_classes,]))
}
#定義RNN的主體結(jié)構(gòu)
def RNN(X,weight,biases):
#原始的X是3維數(shù)據(jù)葛闷,我們需要把它變成2維數(shù)據(jù)才能使用weight的矩陣乘法
#X ==> (128batchs*28steps,28 inputs)
X = tf.reshape(X,[-1,n_inputs])
#X_in = W * X +b
X_in = tf.matmul(X,weight['in']) + biases['in']
#X_in==> (128batchs,28steps,28 inputs)換回3維
X_in = tf.reshape(X_in,[-1,n_steps,n_hidden_units])
#cell
#使用basic LSTM Cell
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units,forget_bias=1.0,state_is_tuple=True)
init_state = lstm_cell.zero_state(batch_size,dtype=tf.float32)#初始化全0 state
outputs,final_state = tf.nn.dynamic_rnn(lstm_cell,X_in,initial_state=init_state,time_major=False)
#
results = tf.matmul(final_state[1],weight['out'])+biases['out']
return results
pred = RNN(x,weight,biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels =y ,logits=pred))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)
#訓(xùn)練RNN
correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
step = 0
while step*batch_size < training_iters:
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
batch_xs= batch_xs.reshape([batch_size,n_steps,n_inputs])
sess.run([train_op],feed_dict={x:batch_xs,y:batch_ys,})
if step % 20 == 0:
print(sess.run(accuracy,feed_dict={x:batch_xs,y:batch_ys,}))
step+=1
tensorflow--RNN解決mnist
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
- 文/潘曉璐 我一進店門赡鲜,熙熙樓的掌柜王于貴愁眉苦臉地迎上來空厌,“玉大人庐船,你說我怎么就攤上這事〕案” “怎么了筐钟?”我有些...
- 文/不壞的土叔 我叫張陵,是天一觀的道長赋朦。 經(jīng)常有香客問我篓冲,道長,這世上最難降的妖魔是什么宠哄? 我笑而不...
- 正文 為了忘掉前任壹将,我火速辦了婚禮,結(jié)果婚禮上毛嫉,老公的妹妹穿的比我還像新娘诽俯。我一直安慰自己,他們只是感情好承粤,可當(dāng)我...
- 文/花漫 我一把揭開白布暴区。 她就那樣靜靜地躺著,像睡著了一般辛臊。 火紅的嫁衣襯著肌膚如雪仙粱。 梳的紋絲不亂的頭發(fā)上,一...
- 文/蒼蘭香墨 我猛地睜開眼济炎,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了辐真?” 一聲冷哼從身側(cè)響起须尚,我...
- 正文 年R本政府宣布,位于F島的核電站恶复,受9級特大地震影響怜森,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜谤牡,卻給世界環(huán)境...
- 文/蒙蒙 一副硅、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧翅萤,春花似錦想许、人聲如沸。這莊子的主人今日做“春日...
- 文/蒼蘭香墨 我抬頭看了看天上的太陽糜烹。三九已至违诗,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間疮蹦,已是汗流浹背诸迟。 一陣腳步聲響...