載入包
import numpy as np
import pandas as pd
import scanpy as sc
sc.settings.verbosity = 3 # verbosity: errors (0), warnings (1), info (2), hints (3)
sc.logging.print_header()
sc.settings.set_figure_params(dpi=80, facecolor='white')
results_file = 'write/pbmc3k.h5ad' # the file that will store the analysis results
兩種方式讀取數(shù)據(jù)
直接讀取.h5ad文件
adata = sc.read('pancreas.h5ad')
讀取10X測序文件
adata = sc.read_10x_mtx(
'data/filtered_gene_bc_matrices/hg19/', # the directory with the `.mtx` file
var_names='gene_symbols', # use gene symbols for the variable names (variables-axis index)
cache=True) # write a cache file for faster subsequent reading
預(yù)處理膜廊、質(zhì)控
adata.var_names_make_unique() # this is unnecessary if using `var_names='gene_ids'` in `sc.read_10x_mtx`
sc.pl.highest_expr_genes(adata, n_top=20, )
# Basic filtering
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
# Filter mitochondrial genes
adata.var['mt'] = adata.var_names.str.startswith('MT-') # annotate the group of mitochondrial genes as 'mt'
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=False, inplace=True)
# genes师枣,counts分布
sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'],
jitter=0.4, multi_panel=True)
# Scatter plot
sc.pl.scatter(adata, x='total_counts', y='pct_counts_mt')
sc.pl.scatter(adata, x='total_counts', y='n_genes_by_counts')
# Filtering by
adata = adata[adata.obs.n_genes_by_counts < 2500, :]
adata = adata[adata.obs.pct_counts_mt < 5, :]
標(biāo)準(zhǔn)流程
# Normalize
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
# Identify HVG
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)
sc.pl.highly_variable_genes(adata)
# 儲存counts到adata.raw
adata.raw = adata
adata = adata[:, adata.var.highly_variable]
# regress_out total_counts & pct_counts_mt
sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt'])
# Scale
sc.pp.scale(adata, max_value=10)
# PCA
sc.tl.pca(adata, svd_solver='arpack')
sc.pl.pca_variance_ratio(adata, log=True)
adata.write(results_file)
# Computing the neighborhood graph
sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40)
# UMAP
sc.tl.umap(adata)
# Unsupervised clustering
sc.tl.leiden(adata)
# Save the result
adata.write(results_file)
尋找差異基因
# each one vs all
sc.tl.rank_genes_groups(adata, 'leiden', method='wilcoxon')
sc.pl.rank_genes_groups(adata, n_genes=25, sharey=False)
# Show the 10 top ranked genes per cluster 0, 1, …, 7 in a dataframe
pd.DataFrame(adata.uns['rank_genes_groups']['names']).head(5)
# Get a table with the scores and groups
result = adata.uns['rank_genes_groups']
groups = result['names'].dtype.names
pd.DataFrame(
{group + '_' + key[:1]: result[key][group]
for group in groups for key in ['names', 'pvals']}).head(5)
# 0 vs 1
sc.tl.rank_genes_groups(adata, 'leiden', groups=['0'], reference='1', method='wilcoxon')
sc.pl.rank_genes_groups(adata, groups=['0'], n_genes=20)
作圖函數(shù)
# FeaturePlot
sc.pl.umap(adata, color=['CST3', 'NKG7', 'PPBP'])
# DimPlot
# 當(dāng)adata.obsm的keys為'umap'時:
sc.pl.umap(adata, color='leiden', legend_loc='on data')
# 當(dāng)adata.obsm的keys為其他時:(這里為'UMAP')
sc.pl.embedding(adata_atac, basis='UMAP', color='Clusters')
# VlnPlot
sc.pl.violin(adata, ['CST3', 'NKG7', 'PPBP'], groupby='leiden')
參考
https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html