MathJax.Hub.Config({
tex2jax: {
inlineMath: [['$','$'], ['\\(','\\)']],
processEscapes: true
},
TeX: {
equationNumbers: {
autoNumber: ["AMS"],
useLabelIds: true
}
},
"HTML-CSS": {
linebreaks: {
automatic: true
},
scale: 100
},
SVG: {
linebreaks: {
automatic: true
}
}
});##麥克斯韋關(guān)系學到熱學這一章的時候,看到這么多公式要記住,頭都炸了饺汹。后來仔細考慮了一下,發(fā)現(xiàn)其中存在不少規(guī)律高每,可以輔助記憶。本文主要從對稱的角度再次考慮熱學麥克斯韋關(guān)系践宴,這也是電磁學中麥克斯韋本人所追求的鲸匿。基于日后復習和分享的目的阻肩,我寫了本文带欢。###公式? \begin{equation}\left(\frac{\partial T}{\partial V}\right)_S=-\left(\frac{\partial p}{\partial S}\right)_V\label{eq:sample}\end{equation}\begin{equation}\left(\frac{\partial T}{\partial p}\right)_S=\left(\frac{\partial V}{\partial S}\right)_p\end{equation}\begin{equation}\left(\frac{\partial S}{\partial V}\right)_T=\left(\frac{\partial p}{\partial T}\right)_V\end{equation}\begin{equation}\left(\frac{\partial S}{\partial p}\right)_T=-\left(\frac{\partial V}{\partial T}\right)_p\end{equation}上述公式粗一看來具有一點點輪轉(zhuǎn)對稱性,是T烤惊、V乔煞、p、S的對稱等式柒室,不過稍有區(qū)別渡贾。? 首先$\bbox[red]{x+y}$