Day6-學(xué)習(xí)R包
一滔驾、安裝和加載R包
1.鏡像設(shè)置
參考你還在每次配置Rstudio的下載鏡像嗎秩仆?
編輯R配置文件 .Rprofile
file.edit('~/.Rprofile')
在Rprofile文件中添加清華源及中科大源混滔,保存再重啟RStudio。
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #對(duì)應(yīng)清華源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #對(duì)應(yīng)中科大源
運(yùn)行options()BioC_mirror
安裝加載三部曲
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)
dplyr的使用
示例數(shù)據(jù)直接使用內(nèi)置數(shù)據(jù)集iris的簡(jiǎn)化版:
test <- iris[c(1:2,51:52,101:102),]
一. dplyr五個(gè)基礎(chǔ)函數(shù)
1.mutate()鸠姨,新增列
mutate(test, new = Sepal.Length * Sepal.Width)
2.select(),按列篩選
(1)按列號(hào)篩選
select(test,1)
select(test,c(1,5))
select(test,Sepal.Length)
(2)按列名篩選
select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
3.filter()篩選行
filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))
4.arrange(),按某1列或某幾列對(duì)整個(gè)表格進(jìn)行排序
arrange(test, Sepal.Length)#默認(rèn)從小到大排序
arrange(test, desc(Sepal.Length))#用desc從大到小
5.summarise():匯總
對(duì)數(shù)據(jù)進(jìn)行匯總操作,結(jié)合group_by使用實(shí)用性強(qiáng)淹真,group_by的意思是根據(jù)by對(duì)數(shù)據(jù)按照哪個(gè)字段進(jìn)行分組讶迁,或者是哪幾個(gè)字段進(jìn)行分組
# 計(jì)算Sepal.Length的平均值和標(biāo)準(zhǔn)差
summarise(test, mean(Sepal.Length), sd(Sepal.Length))
# 先按照Species分組,計(jì)算每組Sepal.Length的平均值和標(biāo)準(zhǔn)差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
二核蘸、dplyr兩個(gè)實(shí)用技能
1:管道操作 %>% (快捷鍵cmd/ctr + shift + M)
(加載任意一個(gè)tidyverse包即可用管道符號(hào))
test %>%
group_by(Species) %>%
summarise(mean(Sepal.Length), sd(Sepal.Length))
2:count統(tǒng)計(jì)某列的unique值
count(test,Species)
三巍糯、dplyr處理關(guān)系數(shù)據(jù)
即將2個(gè)表進(jìn)行連接,注意:不要引入factor
options(stringsAsFactors = F)
test1 <- data.frame(x = c('b','e','f','x'),
z = c("A","B","C",'D'),
stringsAsFactors = F)
test1
test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6),
stringsAsFactors = F)
test2
1.內(nèi)連inner_join,取交集
inner_join(test1, test2, by = "x")
2.左連left_join
left_join(test1, test2, by = 'x')
left_join(test2, test1, by = 'x')
3.全連full_join
full_join( test1, test2, by = 'x')
4.半連接:返回能夠與y表匹配的x表所有記錄semi_join
semi_join(x = test1, y = test2, by = 'x')
5.反連接:返回?zé)o法與y表匹配的x表的所記錄anti_join
anti_join(x = test2, y = test1, by = 'x')
6.簡(jiǎn)單合并
在相當(dāng)于base包里的cbind()函數(shù)和rbind()函數(shù);注意客扎,bind_rows()函數(shù)需要兩個(gè)表格列數(shù)相同祟峦,而bind_cols()函數(shù)則需要兩個(gè)數(shù)據(jù)框有相同的行數(shù)
test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
test3 <- data.frame(z = c(100,200,300,400))
test3
bind_rows(test1, test2)
bind_cols(test1, test3)