題目:查找每層的最大值留美,保存到vector中
先說(shuō)一下一開(kāi)始我的bug涧黄,我一開(kāi)始的思路是把vector都初始化為0拙寡,然后再一個(gè)個(gè)替換掉鸵鸥,那么這就會(huì)出現(xiàn)超時(shí)問(wèn)題M沂臁垮抗!后面修改了一下盟庞,不初始化vector捞稿,而是將容器大小與當(dāng)前節(jié)點(diǎn)層數(shù)比較鳄厌,如果小于當(dāng)前節(jié)點(diǎn)層數(shù)荞胡,就插入當(dāng)前節(jié)點(diǎn)的值。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
vector<int> value;
if(!root)
return value;
findLevelLargestValue(root,0,value);
return value;
}
void findLevelLargestValue(TreeNode * root,int depth,vector<int>& value){
if(!root)
return;
if(depth>=value.size())
{
value.push_back(root->val);
}
else
{
if(root->val>value[depth])
{
value[depth]=root->val;
}
}
findLevelLargestValue(root->left,depth+1,value);
findLevelLargestValue(root->right,depth+1,value);
}
};
下面是leedcode上大神的解法了嚎,空間復(fù)雜度為O(1),采用的是Morris Traversal
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
vector<int> res;
TreeNode* cur = root, *prev = NULL;
int deep = 0;
while (cur) {
if (cur->left == NULL) {
//
if (deep >= res.size())
res.push_back(cur->val);
else
res[deep] = max(res[deep], cur->val);
cur = cur->right;
deep++;
} else {
prev = cur->left;
int move = 1;
while (prev->right && prev->right != cur) {
prev = prev->right;
move++;
}
if (prev->right == NULL) {
if (deep >= res.size())
res.push_back(cur->val);
prev->right = cur;
cur = cur->left;
deep++;
} else {
// back to parent node, remove connection
prev->right = NULL;
deep -= move + 1;
//
if (deep >= res.size())
res.push_back(cur->val);
else
res[deep] = max(res[deep], cur->val);
cur = cur->right;
deep++;
}
}
}
return res;
}
};