deep learing classic papers

Understanding / Generalization / Transfer

Optimization / Training Techniques

Unsupervised / Generative Models

Convolutional Network Models

Image Segmentation / Object Detection

Image / Video / Etc

Natural Language Processing / RNNs

Speech / Other Domain

Reinforcement Learning / Robotics

More Papers from 2016

(More than Top 100)

New Papers: Less than 6 months

Old Papers: Before 2012

HW / SW / Dataset: Technical reports

Book / Survey / Review

Video Lectures / Tutorials / Blogs

Appendix: More than Top 100: More papers not in the list

Understanding / Generalization / Transfer

Distilling the knowledge in a neural network(2015), G. Hinton et al.[pdf]

Deep neural networks are easily fooled: High confidence predictions for unrecognizable images(2015), A. Nguyen et al.[pdf]

How transferable are features in deep neural networks?(2014), J. Yosinski et al.[pdf]

CNN features off-the-Shelf: An astounding baseline for recognition(2014), A. Razavian et al.[pdf]

Learning and transferring mid-Level image representations using convolutional neural networks(2014), M. Oquab et al.[pdf]

Visualizing and understanding convolutional networks(2014), M. Zeiler and R. Fergus[pdf]

Decaf: A deep convolutional activation feature for generic visual recognition(2014), J. Donahue et al.[pdf]

Optimization / Training Techniques

Training very deep networks(2015), R. Srivastava et al.[pdf]

Batch normalization: Accelerating deep network training by reducing internal covariate shift(2015), S. Loffe and C. Szegedy[pdf]

Delving deep into rectifiers: Surpassing human-level performance on imagenet classification(2015), K. He et al.[pdf]

Dropout: A simple way to prevent neural networks from overfitting(2014), N. Srivastava et al.[pdf]

Adam: A method for stochastic optimization(2014), D. Kingma and J. Ba[pdf]

Improving neural networks by preventing co-adaptation of feature detectors(2012), G. Hinton et al.[pdf]

Random search for hyper-parameter optimization(2012) J. Bergstra and Y. Bengio[pdf]

Unsupervised / Generative Models

Pixel recurrent neural networks(2016), A. Oord et al.[pdf]

Improved techniques for training GANs(2016), T. Salimans et al.[pdf]

Unsupervised representation learning with deep convolutional generative adversarial networks(2015), A. Radford et al.[pdf]

DRAW: A recurrent neural network for image generation(2015), K. Gregor et al.[pdf]

Generative adversarial nets(2014), I. Goodfellow et al.[pdf]

Auto-encoding variational Bayes(2013), D. Kingma and M. Welling[pdf]

Building high-level features using large scale unsupervised learning(2013), Q. Le et al.[pdf]

Convolutional Neural Network Models

Rethinking the inception architecture for computer vision(2016), C. Szegedy et al.[pdf]

Inception-v4, inception-resnet and the impact of residual connections on learning(2016), C. Szegedy et al.[pdf]

Identity Mappings in Deep Residual Networks(2016), K. He et al.[pdf]

Deep residual learning for image recognition(2016), K. He et al.[pdf]

Spatial transformer network(2015), M. Jaderberg et al.,[pdf]

Going deeper with convolutions(2015), C. Szegedy et al.[pdf]

Very deep convolutional networks for large-scale image recognition(2014), K. Simonyan and A. Zisserman[pdf]

Return of the devil in the details: delving deep into convolutional nets(2014), K. Chatfield et al.[pdf]

OverFeat: Integrated recognition, localization and detection using convolutional networks(2013), P. Sermanet et al.[pdf]

Maxout networks(2013), I. Goodfellow et al.[pdf]

Network in network(2013), M. Lin et al.[pdf]

ImageNet classification with deep convolutional neural networks(2012), A. Krizhevsky et al.[pdf]

Image: Segmentation / Object Detection

You only look once: Unified, real-time object detection(2016), J. Redmon et al.[pdf]

Fully convolutional networks for semantic segmentation(2015), J. Long et al.[pdf]

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(2015), S. Ren et al.[pdf]

Fast R-CNN(2015), R. Girshick[pdf]

Rich feature hierarchies for accurate object detection and semantic segmentation(2014), R. Girshick et al.[pdf]

Spatial pyramid pooling in deep convolutional networks for visual recognition(2014), K. He et al.[pdf]

Semantic image segmentation with deep convolutional nets and fully connected CRFs, L. Chen et al.[pdf]

Learning hierarchical features for scene labeling(2013), C. Farabet et al.[pdf]

Image / Video / Etc

Image Super-Resolution Using Deep Convolutional Networks(2016), C. Dong et al.[pdf]

A neural algorithm of artistic style(2015), L. Gatys et al.[pdf]

Deep visual-semantic alignments for generating image descriptions(2015), A. Karpathy and L. Fei-Fei[pdf]

Show, attend and tell: Neural image caption generation with visual attention(2015), K. Xu et al.[pdf]

Show and tell: A neural image caption generator(2015), O. Vinyals et al.[pdf]

Long-term recurrent convolutional networks for visual recognition and description(2015), J. Donahue et al.[pdf]

VQA: Visual question answering(2015), S. Antol et al.[pdf]

DeepFace: Closing the gap to human-level performance in face verification(2014), Y. Taigman et al.[pdf]:

Large-scale video classification with convolutional neural networks(2014), A. Karpathy et al.[pdf]

Two-stream convolutional networks for action recognition in videos(2014), K. Simonyan et al.[pdf]

3D convolutional neural networks for human action recognition(2013), S. Ji et al.[pdf]

Natural Language Processing / RNNs

Neural Architectures for Named Entity Recognition(2016), G. Lample et al.[pdf]

Exploring the limits of language modeling(2016), R. Jozefowicz et al.[pdf]

Teaching machines to read and comprehend(2015), K. Hermann et al.[pdf]

Effective approaches to attention-based neural machine translation(2015), M. Luong et al.[pdf]

Conditional random fields as recurrent neural networks(2015), S. Zheng and S. Jayasumana.[pdf]

Memory networks(2014), J. Weston et al.[pdf]

Neural turing machines(2014), A. Graves et al.[pdf]

Neural machine translation by jointly learning to align and translate(2014), D. Bahdanau et al.[pdf]

Sequence to sequence learning with neural networks(2014), I. Sutskever et al.[pdf]

Learning phrase representations using RNN encoder-decoder for statistical machine translation(2014), K. Cho et al.[pdf]

A convolutional neural network for modeling sentences(2014), N. Kalchbrenner et al.[pdf]

Convolutional neural networks for sentence classification(2014), Y. Kim[pdf]

Glove: Global vectors for word representation(2014), J. Pennington et al.[pdf]

Distributed representations of sentences and documents(2014), Q. Le and T. Mikolov[pdf]

Distributed representations of words and phrases and their compositionality(2013), T. Mikolov et al.[pdf]

Efficient estimation of word representations in vector space(2013), T. Mikolov et al.[pdf]

Recursive deep models for semantic compositionality over a sentiment treebank(2013), R. Socher et al.[pdf]

Generating sequences with recurrent neural networks(2013), A. Graves.[pdf]

Speech / Other Domain

End-to-end attention-based large vocabulary speech recognition(2016), D. Bahdanau et al.[pdf]

Deep speech 2: End-to-end speech recognition in English and Mandarin(2015), D. Amodei et al.[pdf]

Speech recognition with deep recurrent neural networks(2013), A. Graves[pdf]

Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups(2012), G. Hinton et al.[pdf]

Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition(2012) G. Dahl et al.[pdf]

Acoustic modeling using deep belief networks(2012), A. Mohamed et al.[pdf]

Reinforcement Learning / Robotics

End-to-end training of deep visuomotor policies(2016), S. Levine et al.[pdf]

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection(2016), S. Levine et al.[pdf]

Asynchronous methods for deep reinforcement learning(2016), V. Mnih et al.[pdf]

Deep Reinforcement Learning with Double Q-Learning(2016), H. Hasselt et al.[pdf]

Mastering the game of Go with deep neural networks and tree search(2016), D. Silver et al.[pdf]

Continuous control with deep reinforcement learning(2015), T. Lillicrap et al.[pdf]

Human-level control through deep reinforcement learning(2015), V. Mnih et al.[pdf]

Deep learning for detecting robotic grasps(2015), I. Lenz et al.[pdf]

Playing atari with deep reinforcement learning(2013), V. Mnih et al.[pdf])

More Papers from 2016

Layer Normalization(2016), J. Ba et al.[pdf]

Learning to learn by gradient descent by gradient descent(2016), M. Andrychowicz et al.[pdf]

Domain-adversarial training of neural networks(2016), Y. Ganin et al.[pdf]

WaveNet: A Generative Model for Raw Audio(2016), A. Oord et al.[pdf][web]

Colorful image colorization(2016), R. Zhang et al.[pdf]

Generative visual manipulation on the natural image manifold(2016), J. Zhu et al.[pdf]

Texture networks: Feed-forward synthesis of textures and stylized images(2016), D Ulyanov et al.[pdf]

SSD: Single shot multibox detector(2016), W. Liu et al.[pdf]

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size(2016), F. Iandola et al.[pdf]

Eie: Efficient inference engine on compressed deep neural network(2016), S. Han et al.[pdf]

Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1(2016), M. Courbariaux et al.[pdf]

Dynamic memory networks for visual and textual question answering(2016), C. Xiong et al.[pdf]

Stacked attention networks for image question answering(2016), Z. Yang et al.[pdf]

Hybrid computing using a neural network with dynamic external memory(2016), A. Graves et al.[pdf]

Google's neural machine translation system: Bridging the gap between human and machine translation(2016), Y. Wu et al.[pdf]

New papers

Newly published papers (< 6 months) which are worth reading

Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour (2017), Priya Goyal et al.[pdf]

TACOTRON: Towards end-to-end speech synthesis (2017), Y. Wang et al.[pdf]

Deep Photo Style Transfer (2017), F. Luan et al.[pdf]

Evolution Strategies as a Scalable Alternative to Reinforcement Learning (2017), T. Salimans et al.[pdf]

Deformable Convolutional Networks (2017), J. Dai et al.[pdf]

Mask R-CNN (2017), K. He et al.[pdf]

Learning to discover cross-domain relations with generative adversarial networks (2017), T. Kim et al.[pdf]

Deep voice: Real-time neural text-to-speech (2017), S. Arik et al.,[pdf]

PixelNet: Representation of the pixels, by the pixels, and for the pixels (2017), A. Bansal et al.[pdf]

Batch renormalization: Towards reducing minibatch dependence in batch-normalized models (2017), S. Ioffe.[pdf]

Wasserstein GAN (2017), M. Arjovsky et al.[pdf]

Understanding deep learning requires rethinking generalization (2017), C. Zhang et al.[pdf]

Least squares generative adversarial networks (2016), X. Mao et al.[pdf]

Old Papers

Classic papers published before 2012

An analysis of single-layer networks in unsupervised feature learning (2011), A. Coates et al.[pdf]

Deep sparse rectifier neural networks (2011), X. Glorot et al.[pdf]

Natural language processing (almost) from scratch (2011), R. Collobert et al.[pdf]

Recurrent neural network based language model (2010), T. Mikolov et al.[pdf]

Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion (2010), P. Vincent et al.[pdf]

Learning mid-level features for recognition (2010), Y. Boureau[pdf]

A practical guide to training restricted boltzmann machines (2010), G. Hinton[pdf]

Understanding the difficulty of training deep feedforward neural networks (2010), X. Glorot and Y. Bengio[pdf]

Why does unsupervised pre-training help deep learning (2010), D. Erhan et al.[pdf]

Learning deep architectures for AI (2009), Y. Bengio.[pdf]

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (2009), H. Lee et al.[pdf]

Greedy layer-wise training of deep networks (2007), Y. Bengio et al.[pdf]

Reducing the dimensionality of data with neural networks, G. Hinton and R. Salakhutdinov.[pdf]

A fast learning algorithm for deep belief nets (2006), G. Hinton et al.[pdf]

Gradient-based learning applied to document recognition (1998), Y. LeCun et al.[pdf]

Long short-term memory (1997), S. Hochreiter and J. Schmidhuber.[pdf]

HW / SW / Dataset

OpenAI gym (2016), G. Brockman et al.[pdf]

TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2016), M. Abadi et al.[pdf]

Theano: A Python framework for fast computation of mathematical expressions, R. Al-Rfou et al.

Torch7: A matlab-like environment for machine learning, R. Collobert et al.[pdf]

MatConvNet: Convolutional neural networks for matlab (2015), A. Vedaldi and K. Lenc[pdf]

Imagenet large scale visual recognition challenge (2015), O. Russakovsky et al.[pdf]

Caffe: Convolutional architecture for fast feature embedding (2014), Y. Jia et al.[pdf]

Book / Survey / Review

On the Origin of Deep Learning (2017), H. Wang and Bhiksha Raj.[pdf]

Deep Reinforcement Learning: An Overview (2017), Y. Li,[pdf]

Neural Machine Translation and Sequence-to-sequence Models(2017): A Tutorial, G. Neubig.[pdf]

Neural Network and Deep Learning (Book, Jan 2017), Michael Nielsen.[html]

Deep learning (Book, 2016), Goodfellow et al.[html]

LSTM: A search space odyssey (2016), K. Greff et al.[pdf]

Tutorial on Variational Autoencoders (2016), C. Doersch.[pdf]

Deep learning (2015), Y. LeCun, Y. Bengio and G. Hinton[pdf]

Deep learning in neural networks: An overview (2015), J. Schmidhuber[pdf]

Representation learning: A review and new perspectives (2013), Y. Bengio et al.[pdf]

Video Lectures / Tutorials / Blogs

(Lectures)

CS231n, Convolutional Neural Networks for Visual Recognition, Stanford University[web]

CS224d, Deep Learning for Natural Language Processing, Stanford University[web]

Oxford Deep NLP 2017, Deep Learning for Natural Language Processing, University of Oxford[web]

(Tutorials)

NIPS 2016 Tutorials, Long Beach[web]

ICML 2016 Tutorials, New York City[web]

ICLR 2016 Videos, San Juan[web]

Deep Learning Summer School 2016, Montreal[web]

Bay Area Deep Learning School 2016, Stanford[web]

(Blogs)

OpenAI[web]

Distill[web]

Andrej Karpathy Blog[web]

Colah's Blog[Web]

WildML[Web]

FastML[web]

TheMorningPaper[web]

Appendix: More than Top 100

(2016)

A character-level decoder without explicit segmentation for neural machine translation (2016), J. Chung et al.[pdf]

Dermatologist-level classification of skin cancer with deep neural networks (2017), A. Esteva et al.[html]

Weakly supervised object localization with multi-fold multiple instance learning (2017), R. Gokberk et al.[pdf]

Brain tumor segmentation with deep neural networks (2017), M. Havaei et al.[pdf]

Professor Forcing: A New Algorithm for Training Recurrent Networks (2016), A. Lamb et al.[pdf]

Adversarially learned inference (2016), V. Dumoulin et al.[web][pdf]

Understanding convolutional neural networks (2016), J. Koushik[pdf]

Taking the human out of the loop: A review of bayesian optimization (2016), B. Shahriari et al.[pdf]

Adaptive computation time for recurrent neural networks (2016), A. Graves[pdf]

Densely connected convolutional networks (2016), G. Huang et al.[pdf]

Region-based convolutional networks for accurate object detection and segmentation (2016), R. Girshick et al.

Continuous deep q-learning with model-based acceleration (2016), S. Gu et al.[pdf]

A thorough examination of the cnn/daily mail reading comprehension task (2016), D. Chen et al.[pdf]

Achieving open vocabulary neural machine translation with hybrid word-character models, M. Luong and C. Manning.[pdf]

Very Deep Convolutional Networks for Natural Language Processing (2016), A. Conneau et al.[pdf]

Bag of tricks for efficient text classification (2016), A. Joulin et al.[pdf]

Efficient piecewise training of deep structured models for semantic segmentation (2016), G. Lin et al.[pdf]

Learning to compose neural networks for question answering (2016), J. Andreas et al.[pdf]

Perceptual losses for real-time style transfer and super-resolution (2016), J. Johnson et al.[pdf]

Reading text in the wild with convolutional neural networks (2016), M. Jaderberg et al.[pdf]

What makes for effective detection proposals? (2016), J. Hosang et al.[pdf]

Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks (2016), S. Bell et al.[pdf].

Instance-aware semantic segmentation via multi-task network cascades (2016), J. Dai et al.[pdf]

Conditional image generation with pixelcnn decoders (2016), A. van den Oord et al.[pdf]

Deep networks with stochastic depth (2016), G. Huang et al.,[pdf]

Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics (2016), Yee Whye Teh et al.[pdf]

(2015)

Ask your neurons: A neural-based approach to answering questions about images (2015), M. Malinowski et al.[pdf]

Exploring models and data for image question answering (2015), M. Ren et al.[pdf]

Are you talking to a machine? dataset and methods for multilingual image question (2015), H. Gao et al.[pdf]

Mind's eye: A recurrent visual representation for image caption generation (2015), X. Chen and C. Zitnick.[pdf]

From captions to visual concepts and back (2015), H. Fang et al.[pdf].

Towards AI-complete question answering: A set of prerequisite toy tasks (2015), J. Weston et al.[pdf]

Ask me anything: Dynamic memory networks for natural language processing (2015), A. Kumar et al.[pdf]

Unsupervised learning of video representations using LSTMs (2015), N. Srivastava et al.[pdf]

Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding (2015), S. Han et al.[pdf]

Improved semantic representations from tree-structured long short-term memory networks (2015), K. Tai et al.[pdf]

Character-aware neural language models (2015), Y. Kim et al.[pdf]

Grammar as a foreign language (2015), O. Vinyals et al.[pdf]

Trust Region Policy Optimization (2015), J. Schulman et al.[pdf]

Beyond short snippents: Deep networks for video classification (2015)[pdf]

Learning Deconvolution Network for Semantic Segmentation (2015), H. Noh et al.[pdf]

Learning spatiotemporal features with 3d convolutional networks (2015), D. Tran et al.[pdf]

Understanding neural networks through deep visualization (2015), J. Yosinski et al.[pdf]

An Empirical Exploration of Recurrent Network Architectures (2015), R. Jozefowicz et al.[pdf]

Deep generative image models using a laplacian pyramid of adversarial networks (2015), E.Denton et al.[pdf]

Gated Feedback Recurrent Neural Networks (2015), J. Chung et al.[pdf]

Fast and accurate deep network learning by exponential linear units (ELUS) (2015), D. Clevert et al.[pdf]

Pointer networks (2015), O. Vinyals et al.[pdf]

Visualizing and Understanding Recurrent Networks (2015), A. Karpathy et al.[pdf]

Attention-based models for speech recognition (2015), J. Chorowski et al.[pdf]

End-to-end memory networks (2015), S. Sukbaatar et al.[pdf]

Describing videos by exploiting temporal structure (2015), L. Yao et al.[pdf]

A neural conversational model (2015), O. Vinyals and Q. Le.[pdf]

Improving distributional similarity with lessons learned from word embeddings, O. Levy et al. [[pdf]] (https://www.transacl.org/ojs/index.php/tacl/article/download/570/124)

Transition-Based Dependency Parsing with Stack Long Short-Term Memory (2015), C. Dyer et al.[pdf]

Improved Transition-Based Parsing by Modeling Characters instead of Words with LSTMs (2015), M. Ballesteros et al.[pdf]

Finding function in form: Compositional character models for open vocabulary word representation (2015), W. Ling et al.[pdf]

(~2014)

DeepPose: Human pose estimation via deep neural networks (2014), A. Toshev and C. Szegedy[pdf]

Learning a Deep Convolutional Network for Image Super-Resolution (2014, C. Dong et al.[pdf]

Recurrent models of visual attention (2014), V. Mnih et al.[pdf]

Empirical evaluation of gated recurrent neural networks on sequence modeling (2014), J. Chung et al.[pdf]

Addressing the rare word problem in neural machine translation (2014), M. Luong et al.[pdf]

On the properties of neural machine translation: Encoder-decoder approaches (2014), K. Cho et. al.

Recurrent neural network regularization (2014), W. Zaremba et al.[pdf]

Intriguing properties of neural networks (2014), C. Szegedy et al.[pdf]

Towards end-to-end speech recognition with recurrent neural networks (2014), A. Graves and N. Jaitly.[pdf]

Scalable object detection using deep neural networks (2014), D. Erhan et al.[pdf]

On the importance of initialization and momentum in deep learning (2013), I. Sutskever et al.[pdf]

Regularization of neural networks using dropconnect (2013), L. Wan et al.[pdf]

Learning Hierarchical Features for Scene Labeling (2013), C. Farabet et al.[pdf]

Linguistic Regularities in Continuous Space Word Representations (2013), T. Mikolov et al.[pdf]

Large scale distributed deep networks (2012), J. Dean et al.[pdf]

A Fast and Accurate Dependency Parser using Neural Networks. Chen and Manning.[pdf]

Acknowledgement

Thank you for all your contributions. Please make sure to read thecontributing guidebefore you make a pull request.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末掂为,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子洼畅,更是在濱河造成了極大的恐慌御板,老刑警劉巖茁肠,帶你破解...
    沈念sama閱讀 211,348評論 6 491
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件季惩,死亡現(xiàn)場離奇詭異,居然都是意外死亡掘剪,警方通過查閱死者的電腦和手機(jī)平委,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,122評論 2 385
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來夺谁,“玉大人廉赔,你說我怎么就攤上這事愚墓。” “怎么了昂勉?”我有些...
    開封第一講書人閱讀 156,936評論 0 347
  • 文/不壞的土叔 我叫張陵浪册,是天一觀的道長。 經(jīng)常有香客問我岗照,道長村象,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 56,427評論 1 283
  • 正文 為了忘掉前任攒至,我火速辦了婚禮厚者,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘迫吐。我一直安慰自己库菲,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,467評論 6 385
  • 文/花漫 我一把揭開白布志膀。 她就那樣靜靜地躺著熙宇,像睡著了一般。 火紅的嫁衣襯著肌膚如雪溉浙。 梳的紋絲不亂的頭發(fā)上烫止,一...
    開封第一講書人閱讀 49,785評論 1 290
  • 那天,我揣著相機(jī)與錄音戳稽,去河邊找鬼馆蠕。 笑死,一個(gè)胖子當(dāng)著我的面吹牛惊奇,可吹牛的內(nèi)容都是我干的互躬。 我是一名探鬼主播,決...
    沈念sama閱讀 38,931評論 3 406
  • 文/蒼蘭香墨 我猛地睜開眼颂郎,長吁一口氣:“原來是場噩夢啊……” “哼吼渡!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起祖秒,我...
    開封第一講書人閱讀 37,696評論 0 266
  • 序言:老撾萬榮一對情侶失蹤诞吱,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后竭缝,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,141評論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡沼瘫,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,483評論 2 327
  • 正文 我和宋清朗相戀三年抬纸,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片耿戚。...
    茶點(diǎn)故事閱讀 38,625評論 1 340
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡湿故,死狀恐怖阿趁,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情坛猪,我是刑警寧澤脖阵,帶...
    沈念sama閱讀 34,291評論 4 329
  • 正文 年R本政府宣布,位于F島的核電站墅茉,受9級特大地震影響命黔,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜就斤,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,892評論 3 312
  • 文/蒙蒙 一悍募、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧洋机,春花似錦坠宴、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,741評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至衔肢,卻和暖如春颠通,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背膀懈。 一陣腳步聲響...
    開封第一講書人閱讀 31,977評論 1 265
  • 我被黑心中介騙來泰國打工顿锰, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人启搂。 一個(gè)月前我還...
    沈念sama閱讀 46,324評論 2 360
  • 正文 我出身青樓硼控,卻偏偏與公主長得像,于是被迫代替她去往敵國和親胳赌。 傳聞我的和親對象是個(gè)殘疾皇子牢撼,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,492評論 2 348

推薦閱讀更多精彩內(nèi)容