引言
本文編寫python程序榛搔,以模擬的思路诺凡,用枚舉法尋找最優(yōu)策略。
關(guān)卡Medx的策略空間
Medx包含三個決策樹践惑,三個輸出流腹泌。決策樹的標(biāo)簽、與輸出流的連接共同組成了策略空間尔觉。
import itertools as itl
colorScheme = itl.product(list('RGBA'), repeat=6)
colorScheme = list(colorScheme)
def group222(line):
scheme = []
it = iter(line)
for i in range(3):
left, right = next(it), next(it)
scheme.append((left, right))
return scheme
colorScheme = [group222(s) for s in colorScheme]
colorScheme
>>
[[('R', 'R'), ('R', 'R'), ('R', 'R')],
[('R', 'R'), ('R', 'R'), ('R', 'G')],
[('R', 'R'), ('R', 'R'), ('R', 'B')],
[('R', 'R'), ('R', 'R'), ('R', 'A')],
[('R', 'R'), ('R', 'R'), ('G', 'R')],
......
import pickle as pk
pk.dump(colorScheme, open('colorScheme.dat', 'wb'))
生成RGBA(A指any)凉袱,的笛卡爾積,每個決策樹有兩個標(biāo)簽所以一共六個侦铜。group222
將它們打包成兩個兩個一組以備后續(xù)使用专甩。
連接策略的生成類似。
決策樹钉稍,收集器對象設(shè)計(jì)
要反應(yīng)問題的計(jì)算圖涤躲,同時具有一定的可拓展性。
from collections import Counter
class DT:
def __init__(self, unext=None, dnext=None):
self.unext = unext
self.dnext = dnext
def config(self, ucolor, dcolor):
self.ucolor = ucolor
self.dcolor = dcolor
def activate(self, package):
color, amount = package
umatch = color == self.ucolor or self.ucolor == 'A'
dmatch = color == self.dcolor or self.dcolor == 'A'
uamount = damount = 0
if umatch == dmatch:
uamount = damount = amount / 2
else:
uamount = umatch * amount
damount = dmatch * amount
self.unext.activate((color, uamount))
self.dnext.activate((color, damount))
class Collector(Counter):
def __init__(self):
self.update(dict(R=0, G=0, B=0))
def activate(self, package):
color, amount = package
self[color] += amount
def reset(self):
self['R'] = 0
self['G'] = 0
self['B'] = 0
設(shè)計(jì)activate
贡未,是為了讓決策樹和收集器統(tǒng)一接口种樱。收集器繼承collections.Counter
,獲得方便的合并操作(后面作用體現(xiàn))俊卤。
在策略空間中尋找最小誤差
from node import DT, Collector
import pickle as pk
import itertools as it
# 加載顏色空間和連接空間
colorScheme = pk.load(open('colorScheme.dat', 'rb'))
linkScheme = pk.load(open('linkScheme.dat', 'rb'))
# 布置決策樹結(jié)點(diǎn)
widgets = [DT() for i in range(3)]
# 布置收集器
collectors = [Collector() for i in range(4)]
# 連接計(jì)算圖
widgets[0].__init__(widgets[1], widgets[2])
widgets[1].__init__(collectors[0], collectors[1])
widgets[2].__init__(collectors[2], collectors[3])
# 記錄各個策略的表現(xiàn)
exitsRecords = []
for colorS, linkS in it.product(colorScheme, linkScheme):
# 在顏色空間和連接空間的笛卡爾積中查找
# 按顏色策略配置決策樹
for i in range(3):
ucolor, dcolor = colorS[i]
widgets[i].config(ucolor, dcolor)
# 安放輸出流
exits = [Collector() for i in range(3)]
# 數(shù)據(jù)輸入嫩挤,激活根結(jié)點(diǎn)
widgets[0].activate(('R', 36))
widgets[0].activate(('G', 40))
widgets[0].activate(('B', 26))
# 按連接策略合并收集器
for i, c in enumerate(collectors):
exits[linkS[i]].update(c)
c.reset()
# 統(tǒng)計(jì)本策略誤差
e0, e1, e2 = exits
if e0['B'] != 0 or e1['R'] != 0 or e2['B'] != 0 :
continue
diff0 = (e0['R'] + e0['G'] - 19) ** 2
diff1 = (e1['G'] + e1['B'] - 16) ** 2
diff2 = (e2['R'] + e2['G'] - 15) ** 2
cost = diff0 + diff1 + diff2
exitsRecords.append((cost, colorS, linkS, (e0, e1, e2)))
from operator import itemgetter
sorted(exitsRecords, key=itemgetter(0))[0]
>>
(914.0,
[('R', 'B'), ('R', 'G'), ('R', 'B')],
(0, 2, 2, 1),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0})))
程序輸出的即最佳策略(之一),如圖
medx.png
本關(guān)所有最佳策略
輸出結(jié)果應(yīng)做如下解讀:
- 誤差值(本關(guān)914已最邢小)
- 決策樹配色方案岂昭,按左、上哺哼、右順序
- 4個終端出口連接的輸出流
- 輸出流獲得色塊的分布
[(914.0,
[('R', 'B'), ('R', 'G'), ('R', 'B')],
(0, 2, 2, 1),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('R', 'B'), ('R', 'G'), ('G', 'A')],
(0, 2, 2, 1),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('R', 'B'), ('R', 'G'), ('B', 'R')],
(0, 2, 1, 2),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('R', 'B'), ('R', 'G'), ('A', 'G')],
(0, 2, 1, 2),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('R', 'B'), ('G', 'R'), ('R', 'B')],
(2, 0, 2, 1),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('R', 'B'), ('G', 'R'), ('G', 'A')],
(2, 0, 2, 1),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('R', 'B'), ('G', 'R'), ('B', 'R')],
(2, 0, 1, 2),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('R', 'B'), ('G', 'R'), ('A', 'G')],
(2, 0, 1, 2),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('B', 'R'), ('R', 'B'), ('R', 'G')],
(2, 1, 0, 2),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('B', 'R'), ('R', 'B'), ('G', 'R')],
(2, 1, 2, 0),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('B', 'R'), ('G', 'A'), ('R', 'G')],
(2, 1, 0, 2),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('B', 'R'), ('G', 'A'), ('G', 'R')],
(2, 1, 2, 0),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('B', 'R'), ('B', 'R'), ('R', 'G')],
(1, 2, 0, 2),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('B', 'R'), ('B', 'R'), ('G', 'R')],
(1, 2, 2, 0),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('B', 'R'), ('A', 'G'), ('R', 'G')],
(1, 2, 0, 2),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0}))),
(914.0,
[('B', 'R'), ('A', 'G'), ('G', 'R')],
(1, 2, 2, 0),
(Collector({'R': 36, 'G': 0.0, 'B': 0.0}),
Collector({'R': 0, 'G': 10.0, 'B': 26}),
Collector({'R': 0, 'G': 30.0, 'B': 0.0})))]