Hadoop分布式集群介紹
本次Hadoop搭建使用GitHub - kiwenlau/hadoop-cluster-docker: Run Hadoop Custer within Docker Containers進(jìn)行枝秤。
首先需要明確Hadoop集群的啟動(dòng)順序如下:
namenode -> datanode -> resourcemanager -> nodemanager -> historyserver
可使用瀏覽器通過如下地址監(jiān)視hadoop集群的狀況:
- Namenode: http://<dockerhadoop_IP_address>:9870/dfshealth.html#tab-overview
- History server: http://<dockerhadoop_IP_address>:8188/applicationhistory
- Datanode: http://<dockerhadoop_IP_address>:9864/
- Nodemanager: http://<dockerhadoop_IP_address>:8042/node
- Resource manager: http://<dockerhadoop_IP_address>:8088/
準(zhǔn)備docker-compose相關(guān)文件
準(zhǔn)備docker-compose.yml如下所示:
version: "3"
services:
namenode:
image: bde2020/hadoop-namenode:2.0.0-hadoop3.1.3-java8
container_name: namenode
ports:
- 9870:9870
volumes:
- hadoop_namenode:/hadoop/dfs/name
environment:
- CLUSTER_NAME=test
env_file:
- ./hadoop.env
datanode:
image: bde2020/hadoop-datanode:2.0.0-hadoop3.1.3-java8
container_name: datanode
volumes:
- hadoop_datanode:/hadoop/dfs/data
environment:
SERVICE_PRECONDITION: "namenode:9870"
env_file:
- ./hadoop.env
resourcemanager:
image: hadoop-resourcemanager:2.0.0-hadoop3.1.3-java8
container_name: resourcemanager
environment:
SERVICE_PRECONDITION: "namenode:9870 datanode:9864"
env_file:
- ./hadoop.env
ports:
- 8088:8088
nodemanager1:
image: bde2020/hadoop-nodemanager:2.0.0-hadoop3.1.3-java8
container_name: nodemanager
environment:
SERVICE_PRECONDITION: "namenode:9870 datanode:9864 resourcemanager:8088"
env_file:
- ./hadoop.env
historyserver:
image: bde2020/hadoop-historyserver:2.0.0-hadoop3.1.3-java8
container_name: historyserver
environment:
SERVICE_PRECONDITION: "namenode:9870 datanode:9864 resourcemanager:8088"
volumes:
- hadoop_historyserver:/hadoop/yarn/timeline
env_file:
- ./hadoop.env
volumes:
hadoop_namenode:
hadoop_datanode:
hadoop_historyserver:
hadoop.env文件如下:
CORE_CONF_fs_defaultFS=hdfs://namenode:9000
CORE_CONF_hadoop_http_staticuser_user=root
CORE_CONF_hadoop_proxyuser_hue_hosts=*
CORE_CONF_hadoop_proxyuser_hue_groups=*
CORE_CONF_io_compression_codecs=org.apache.hadoop.io.compress.SnappyCodec
HDFS_CONF_dfs_webhdfs_enabled=true
HDFS_CONF_dfs_permissions_enabled=false
HDFS_CONF_dfs_namenode_datanode_registration_ip___hostname___check=false
YARN_CONF_yarn_log___aggregation___enable=true
YARN_CONF_yarn_log_server_url=http://historyserver:8188/applicationhistory/logs/
YARN_CONF_yarn_resourcemanager_recovery_enabled=true
YARN_CONF_yarn_resourcemanager_store_class=org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore
YARN_CONF_yarn_resourcemanager_scheduler_class=org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler
YARN_CONF_yarn_scheduler_capacity_root_default_maximum___allocation___mb=8192
YARN_CONF_yarn_scheduler_capacity_root_default_maximum___allocation___vcores=4
YARN_CONF_yarn_resourcemanager_fs_state___store_uri=/rmstate
YARN_CONF_yarn_resourcemanager_system___metrics___publisher_enabled=true
YARN_CONF_yarn_resourcemanager_hostname=resourcemanager
YARN_CONF_yarn_resourcemanager_address=resourcemanager:8032
YARN_CONF_yarn_resourcemanager_scheduler_address=resourcemanager:8030
YARN_CONF_yarn_resourcemanager_resource__tracker_address=resourcemanager:8031
YARN_CONF_yarn_timeline___service_enabled=true
YARN_CONF_yarn_timeline___service_generic___application___history_enabled=true
YARN_CONF_yarn_timeline___service_hostname=historyserver
YARN_CONF_mapreduce_map_output_compress=true
YARN_CONF_mapred_map_output_compress_codec=org.apache.hadoop.io.compress.SnappyCodec
YARN_CONF_yarn_nodemanager_resource_memory___mb=16384
YARN_CONF_yarn_nodemanager_resource_cpu___vcores=8
YARN_CONF_yarn_nodemanager_disk___health___checker_max___disk___utilization___per___disk___percentage=98.5
YARN_CONF_yarn_nodemanager_remote___app___log___dir=/app-logs
YARN_CONF_yarn_nodemanager_aux___services=mapreduce_shuffle
MAPRED_CONF_mapreduce_framework_name=yarn
MAPRED_CONF_mapred_child_java_opts=-Xmx4096m
MAPRED_CONF_mapreduce_map_memory_mb=4096
MAPRED_CONF_mapreduce_reduce_memory_mb=8192
MAPRED_CONF_mapreduce_map_java_opts=-Xmx3072m
MAPRED_CONF_mapreduce_reduce_java_opts=-Xmx6144m
MAPRED_CONF_yarn_app_mapreduce_am_env=HADOOP_MAPRED_HOME=/opt/hadoop-3.1.3/
MAPRED_CONF_mapreduce_map_env=HADOOP_MAPRED_HOME=/opt/hadoop-3.1.3/
MAPRED_CONF_mapreduce_reduce_env=HADOOP_MAPRED_HOME=/opt/hadoop-3.1.3/
構(gòu)建resourcemanager鏡像
由于namenode處于安全模式,resourcemanager需要延遲30秒啟動(dòng)怒详。
修改run.sh如下:
#!/bin/bash
sleep 30
$HADOOP_PREFIX/bin/yarn --config $HADOOP_CONF_DIR resourcemanager
Dockerfile
FROM bde2020/hadoop-base
MAINTAINER Ivan Ermilov <ivan.s.ermilov@gmail.com>
HEALTHCHECK CMD curl -f http://localhost:8088/ || exit 1
ADD run.sh /run.sh
RUN chmod a+x /run.sh
EXPOSE 8088
CMD ["/run.sh"]
運(yùn)行如下命令構(gòu)建resourcemanager鏡像文件:
docker build -t hadoop-resourcemanager:2.0.0-hadoop3.1.3-java8 .
啟動(dòng)Hadoop集群
運(yùn)行如下命令啟動(dòng)Hadoop集群
docker-compose up -d
可通過瀏覽器正常訪問相應(yīng)的監(jiān)視地址。