??在上一篇文章里iOS開(kāi)發(fā)之類(lèi)的本質(zhì)里,我們?cè)敿?xì)研究了bits
庄岖,我們用內(nèi)存偏移得出的豁翎,我們計(jì)算了cache_t
的大小,然后用lldb
打印出了bits
里面的內(nèi)容隅忿。今天心剥,我們來(lái)研究,我們跳過(guò)的背桐,cache_t
里面究竟存放了什么東西优烧。我們先來(lái)進(jìn)去看看cache_t
的結(jié)構(gòu):
struct cache_t {
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
explicit_atomic<struct bucket_t *> _buckets;
explicit_atomic<mask_t> _mask;
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
explicit_atomic<uintptr_t> _maskAndBuckets;
mask_t _mask_unused;
static constexpr uintptr_t maskShift = 48;
static constexpr uintptr_t maskZeroBits = 4;
static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS,
"Bucket field doesn't have enough bits for arbitrary pointers.");
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
explicit_atomic<uintptr_t> _maskAndBuckets;
mask_t _mask_unused;
#if __LP64__
uint16_t _flags;
#endif
uint16_t _occupied;
}
這里有不同的架構(gòu)處理方式:
-
CACHE_MASK_STORAGE_OUTLINED
表示macOS
,i386
的架構(gòu)链峭。 -
CACHE_MASK_STORAGE_HIGH_16
表示真機(jī)畦娄,arm64
的架構(gòu)。 -
CACHE_MASK_STORAGE_LOW_4
表示模擬器,x86
的架構(gòu)熙卡。
我們繼續(xù)查看里面的bucket_t
源碼杖刷,里面有兩個(gè)版本,真機(jī)和非真機(jī)驳癌,只是sel
和imp
的順序不同
struct bucket_t {
private:
#if __arm64__ //真機(jī)
//explicit_atomic 是加了原子性的保護(hù)
explicit_atomic<uintptr_t> _imp;
explicit_atomic<SEL> _sel;
#else //非真機(jī)
explicit_atomic<SEL> _sel;
explicit_atomic<uintptr_t> _imp;
#endif
//方法等其他部分省略
}
現(xiàn)在我們查找cache中的sel和imp滑燃,我們先定義一些方法和屬性,并實(shí)現(xiàn)喂柒。
@interface Person : NSObject{
NSString *name;
}
@property (nonatomic, copy)NSString *nickname;
@property (nonatomic, copy)NSString *height;
-(void)eat;
-(void)drink;
-(void)say;
+(void)run;
@end
然后我們調(diào)用
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here... class_data_bits_t
Person *person = [Person alloc];
[person eat];
[person say];
[person drink];
[Person run];
NSLog(@"Hello, World!");
}
return 0;
}
添加斷點(diǎn)
接下來(lái)又是我們熟悉的lldb
調(diào)試:
-
p $3.buckets()
是因?yàn)槲覀冊(cè)?code>cache_t的源碼里不瓶,提供了這個(gè)方法:
同樣的,p $5.sel()/p $5.imp(p)
也是cache_t
的源碼里提供的方法:
通過(guò)我們上面的調(diào)試灾杰,我們看到蚊丐,第一次斷點(diǎn)的時(shí)候,cache_t
的緩存中艳吠,_occupied = 0
麦备,在第二次斷點(diǎn)的時(shí)候,我們看到了昭娩,里面有了方法的緩存凛篙,然后我們打印出了eat()
方法。我們?cè)賵?zhí)行一步方法栏渺,然后看看緩存中是否多了內(nèi)容呛梆。
可以看到,在執(zhí)行了
say()
方法后磕诊,我們成功的緩存中打印出了say()
方法填物。這里p($9+1)
就用到了我們之前說(shuō)到的指針偏移。你也可以p $8.buckets()[0]/p $8.buckets()[1]
脫離源碼環(huán)境通過(guò)項(xiàng)目查找
??我們之前的調(diào)試都是通過(guò)源碼環(huán)境進(jìn)行的霎终,那么我們能不能脫離源碼環(huán)境來(lái)進(jìn)行查找呢滞磺?我們可以模擬源碼環(huán)境。然后將需要的源碼進(jìn)行設(shè)計(jì)莱褒,拷貝到項(xiàng)目中击困,模擬一下方法的寫(xiě)入流程:
typedef uint32_t mask_t; // x86_64 & arm64 asm are less efficient with 16-bits
struct hk_bucket_t {
SEL _sel;
IMP _imp;
};
struct hk_cache_t {
struct hk_bucket_t * _buckets;
mask_t _mask;
uint16_t _flags;
uint16_t _occupied;
};
struct hk_class_data_bits_t {
uintptr_t bits;
};
struct lg_objc_class {
Class ISA;
Class superclass;
struct hk_cache_t cache; // formerly cache pointer and vtable
struct hk_class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
};
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here... class_data_bits_t _buckets
Person *person = [Person alloc];
Class p = [Person class];
[person say1];
[person say2];
// [person say3];
// [person say4];
//
struct lg_objc_class *hk_pClass = (__bridge struct lg_objc_class *)(p);
NSLog(@"%hu - %u",hk_pClass->cache._occupied,hk_pClass->cache._mask);
for (mask_t i = 0; i < hk_pClass->cache._mask; i++) {
// 打印獲取的 bucket
struct hk_bucket_t bucket = hk_pClass->cache._buckets[i];
NSLog(@"%@ - %p",NSStringFromSelector(bucket._sel),bucket._imp);
}
NSLog(@"Hello, World!%@",p);
}
return 0;
}
看一下輸出結(jié)果:
然后我們打開(kāi)注釋的
say3()
,say4()
方法,看看打印結(jié)果:發(fā)現(xiàn)有變化的是
_occupied
广凸,_mask
阅茶,從2-3
變成了2-7
,那么他們分別是什么意思呢炮障?并且say3()
,say4()
的調(diào)用順序貌似有問(wèn)題目派,和我們調(diào)用的順序不太一樣。我們看cache_t
源碼里的方法:然后我們?nèi)炙阉鬟@個(gè)方法,我們找到了
cache_
t的插入方法:
void cache_t::insert(Class cls, SEL sel, IMP imp, id receiver)
{
mask_t newOccupied = occupied() + 1;
unsigned oldCapacity = capacity(), capacity = oldCapacity;
if (slowpath(isConstantEmptyCache())) {
// Cache is read-only. Replace it.
if (!capacity) capacity = INIT_CACHE_SIZE;
reallocate(oldCapacity, capacity, /* freeOld */false);
}
else if (fastpath(newOccupied + CACHE_END_MARKER <= capacity / 4 * 3)) {
// Cache is less than 3/4 full. Use it as-is.
}
else {
capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
if (capacity > MAX_CACHE_SIZE) {
capacity = MAX_CACHE_SIZE;
}
reallocate(oldCapacity, capacity, true);
}
bucket_t *b = buckets();
mask_t m = capacity - 1;
mask_t begin = cache_hash(sel, m);
mask_t i = begin;
do {
if (fastpath(b[i].sel() == 0)) {
incrementOccupied();
b[i].set<Atomic, Encoded>(sel, imp, cls);
return;
}
if (b[i].sel() == sel) {
// The entry was added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
return;
}
} while (fastpath((i = cache_next(i, m)) != begin));
}
- 如果有內(nèi)容插入就會(huì)調(diào)用代碼:
mask_t newOccupied = occupied() + 1;
- 然后進(jìn)入判斷胁赢,
capacity = INIT_CACHE_SIZE
,INIT_CACHE_SIZE
在這里等于4,然后開(kāi)辟空間函數(shù)reallocate()
然后我們看一下這個(gè)函數(shù):
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
bucket_t *oldBuckets = buckets();
bucket_t *newBuckets = allocateBuckets(newCapacity);
ASSERT(newCapacity > 0);
ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
setBucketsAndMask(newBuckets, newCapacity - 1);
if (freeOld) {
cache_collect_free(oldBuckets, oldCapacity);
}
}
- 里面有個(gè)寫(xiě)入的函數(shù)
allocateBuckets()
智末,再往里面就是我們熟悉的calloc
函數(shù)谅摄,然后還有個(gè)函數(shù)setBucketsAndMask()
,這個(gè)函數(shù)的作用是為了寫(xiě)入cache_t
系馆。 - 我們繼續(xù)流程分析送漠,往下繼續(xù)判斷,
// Cache is less than 3/4 full. Use it as-is.
就是如果大于3/4由蘑,就會(huì)進(jìn)行擴(kuò)容闽寡,我們一開(kāi)始申請(qǐng)了4個(gè),然后到第3個(gè)的時(shí)候尼酿,我們就會(huì)*2
爷狈,所以我們繼續(xù)往下看到了mask_t m = capacity - 1;
,這就是為什么我們打印出來(lái)的mask
是3和7了裳擎,因?yàn)?code>3 = 4-1涎永,7 = 4*2-1
- 在擴(kuò)容算法里,我們有個(gè)
reallocate(oldCapacity, capacity, true);
函數(shù)鹿响,跟上面的一樣羡微,里面有個(gè)判斷,freeold
惶我,然后調(diào)用了cache_collect_free(oldBuckets, oldCapacity);
妈倔,我們繼續(xù)看一下具體實(shí)現(xiàn):
static void cache_collect_free(bucket_t *data, mask_t capacity)
{
#if CONFIG_USE_CACHE_LOCK
cacheUpdateLock.assertLocked();
#else
runtimeLock.assertLocked();
#endif
if (PrintCaches) recordDeadCache(capacity);
_garbage_make_room ();
garbage_byte_size += cache_t::bytesForCapacity(capacity);
garbage_refs[garbage_count++] = data;
cache_collect(false);
}
里面有個(gè)_garbage_make_room ();
函數(shù),繼續(xù)往里看:
static void _garbage_make_room(void)
{
static int first = 1;
// Create the collection table the first time it is needed
if (first)
{
first = 0;
garbage_refs = (bucket_t**)
malloc(INIT_GARBAGE_COUNT * sizeof(void *));
garbage_max = INIT_GARBAGE_COUNT;
}
// Double the table if it is full
else if (garbage_count == garbage_max)
{
garbage_refs = (bucket_t**)
realloc(garbage_refs, garbage_max * 2 * sizeof(void *));
garbage_max *= 2;
}
}
這里才找到了真的擴(kuò)容函數(shù)绸贡,所做的事情盯蝴,就是重新申請(qǐng)內(nèi)存空間realloc(garbage_refs, garbage_max * 2 * sizeof(void *));``garbage_max = INIT_GARBAGE_COUNT;``INIT_GARBAGE_COUNT = 128
。
總結(jié):
1恃轩、_mask是什么结洼?
_mask
是指掩碼數(shù)據(jù),用于在哈希算法或者哈希沖突算法中計(jì)算哈希下標(biāo)叉跛,其中mask
等于capacity - 1
2松忍、_occupied 是什么?
_occupied
表示哈希表中sel-imp
的占用大小 (即可以理解為分配的內(nèi)存中已經(jīng)存儲(chǔ)了sel-imp
的的個(gè)數(shù))筷厘,所有的方法調(diào)用都會(huì)影響_occupied
,包括init
方法鸣峭。
4、bucket數(shù)據(jù)為什么會(huì)有丟失的情況酥艳?摊溶,例如2-7中,只有say3充石、say4方法有函數(shù)指針
原因是在擴(kuò)容時(shí)莫换,是將原有的內(nèi)存全部清除了,再重新申請(qǐng)了內(nèi)存導(dǎo)致的
5、2-7中say3拉岁、say4的打印順序?yàn)槭裁词莝ay4先打印坷剧,say3后打印,且還是挨著的喊暖,即順序有問(wèn)題惫企?
因?yàn)?code>sel-imp的存儲(chǔ)是通過(guò)哈希算法計(jì)算下標(biāo)的,其計(jì)算的下標(biāo)有可能已經(jīng)存儲(chǔ)了sel
陵叽,所以又需要通過(guò)哈希沖突算法重新計(jì)算哈希下標(biāo)狞尔,所以導(dǎo)致下標(biāo)是隨機(jī)的,并不是固定的