深度學(xué)習(xí)學(xué)習(xí)路線

Deep Learning Papers Reading Roadmap

If you are a newcomer to the Deep Learning area, the first question you may have is "Which paper should I start reading from?"

Here is a reading roadmap of Deep Learning papers!

The roadmap is constructed in accordance with the following four guidelines:

  • From outline to detail
  • From old to state-of-the-art
  • from generic to specific areas
  • focus on state-of-the-art

You will find many papers that are quite new but really worth reading.

I would continue adding papers to this roadmap.


1 Deep Learning History and Basics

1.0 Book

Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning." An MIT Press book. (2015)[html](Deep Learning Bible, you can read this book while reading following papers.)

1.1 Survey

[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521.7553 (2015): 436-444.[pdf](Three Giants' Survey)

1.2 Deep Belief Network(DBN)(Milestone of Deep Learning Eve)

[2] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554.[pdf](Deep Learning Eve)

[3] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313.5786 (2006): 504-507.[pdf](Milestone, Show the promise of deep learning)

1.3 ImageNet Evolution(Deep Learning broke out from here)

[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.[pdf](AlexNet, Deep Learning Breakthrough)

[5] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).[pdf](VGGNet,Neural Networks become very deep!)

[6] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.[pdf](GoogLeNet)

[7] He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015).[pdf](ResNet,Very very deep networks, CVPR best paper)

1.4 Speech Recognition Evolution

[8]Hinton, Geoffrey, et al. "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups." IEEE Signal Processing Magazine 29.6 (2012): 82-97.[pdf](Breakthrough in speech recognition)

[9]

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. "Speech recognition with deep recurrent neural networks." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013.

[pdf]

(RNN)

[10]

Graves, Alex, and Navdeep Jaitly. "Towards End-To-End Speech Recognition with Recurrent Neural Networks." ICML. Vol. 14. 2014.

[pdf]
[11]

Sak, Ha?im, et al. "Fast and accurate recurrent neural network acoustic models for speech recognition." arXiv preprint arXiv:1507.06947 (2015).

[pdf]

(Google Speech Recognition System)

[12]

Amodei, Dario, et al. "Deep speech 2: End-to-end speech recognition in english and mandarin." arXiv preprint arXiv:1512.02595 (2015).

[pdf]

(Baidu Speech Recognition System)

[13]

W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig "Achieving Human Parity in Conversational Speech Recognition." arXiv preprint arXiv:1610.05256 (2016).

[pdf]

(State-of-the-art in speech recognition, Microsoft)

After reading above papers, you will have a basic understanding of the Deep Learning history, the basic architectures of Deep Learning model(including CNN, RNN, LSTM) and how deep learning can be applied to image and speech recognition issues. The following papers will take you in-depth understanding of the Deep Learning method, Deep Learning in different areas of application and the frontiers. I suggest that you can choose the following papers based on your interests and research direction.

2 Deep Learning Method

2.1 Model

[14]

Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012).

[pdf]

(Dropout)

[15]

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958.

[pdf]

[16]

Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015).

[pdf]

(An outstanding Work in 2015)

[17]

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016).

[pdf]

(Update of Batch Normalization)

[18]

Courbariaux, Matthieu, et al. "Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or?1."

[pdf]

(New Model,Fast)

[19]

Jaderberg, Max, et al. "Decoupled neural interfaces using synthetic gradients." arXiv preprint arXiv:1608.05343 (2016).

[pdf]

(Innovation of Training Method,Amazing Work)

[20]

Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge transfer." arXiv preprint arXiv:1511.05641 (2015).

[pdf]

(Modify previously trained network to reduce training epochs)

[21]

Wei, Tao, et al. "Network Morphism." arXiv preprint arXiv:1603.01670 (2016).

[pdf]

(Modify previously trained network to reduce training epochs)

2.2 Optimization

[22]

Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning." ICML (3) 28 (2013): 1139-1147.

[pdf]

(Momentum optimizer)

[23]

Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).

[pdf]

(Maybe used most often currently)

[24]

Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." arXiv preprint arXiv:1606.04474 (2016).

[pdf]

(Neural Optimizer,Amazing Work)

[25]

Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding." CoRR, abs/1510.00149 2 (2015).

[pdf]

(ICLR best paper, new direction to make NN running fast,DeePhi Tech Startup)

[26]

Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size." arXiv preprint arXiv:1602.07360 (2016).

[pdf]

(Also a new direction to optimize NN,DeePhi Tech Startup)

2.3 Unsupervised Learning / Deep Generative Model

[27]

Le, Quoc V. "Building high-level features using large scale unsupervised learning." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013.

[pdf]

(Milestone, Andrew Ng, Google Brain Project, Cat)

[28]

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).

[pdf](VAE)

[29]

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.

[pdf](GAN,super cool idea)

[30]

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

[pdf]

(DCGAN)

[31]

Gregor, Karol, et al. "DRAW: A recurrent neural network for image generation." arXiv preprint arXiv:1502.04623 (2015).

[pdf]

(VAE with attention, outstanding work)

[32]

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks." arXiv preprint arXiv:1601.06759 (2016).

[pdf]

(PixelRNN)

[33]

Oord, Aaron van den, et al. "Conditional image generation with PixelCNN decoders." arXiv preprint arXiv:1606.05328 (2016).

[pdf]

(PixelCNN)

2.4 RNN / Sequence-to-Sequence Model

[34]

Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013).

[pdf](LSTM, very nice generating result, show the power of RNN)

[35]

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

[pdf]

(First Seq-to-Seq Paper)

[36]

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. 2014.

[pdf]

(Outstanding Work)

[37]

Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate." arXiv preprint arXiv:1409.0473 (2014).

[pdf]

[38]

Vinyals, Oriol, and Quoc Le. "A neural conversational model." arXiv preprint arXiv:1506.05869 (2015).

[pdf]

(Seq-to-Seq on Chatbot)

2.5 Neural Turing Machine

[39]

Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014).

[pdf](Basic Prototype of Future Computer)

[40]

Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement learning neural Turing machines." arXiv preprint arXiv:1505.00521 362 (2015).

[pdf]

[41]

Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." arXiv preprint arXiv:1410.3916 (2014).

[pdf]

[42]

Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. "End-to-end memory networks." Advances in neural information processing systems. 2015.

[pdf]

[43]

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." Advances in Neural Information Processing Systems. 2015.

[pdf]

[44]

Graves, Alex, et al. "Hybrid computing using a neural network with dynamic external memory." Nature (2016).

[pdf](Milestone,combine above papers' ideas)

2.6 Deep Reinforcement Learning

[45]

Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).

[pdf])

(First Paper named deep reinforcement learning)

[46]

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.

[pdf]

(Milestone)

[47]

Wang, Ziyu, Nando de Freitas, and Marc Lanctot. "Dueling network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581 (2015).

[pdf]

(ICLR best paper,great idea)

[48]

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." arXiv preprint arXiv:1602.01783 (2016).

[pdf]

(State-of-the-art method)

[49]

Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).

[pdf]

(DDPG)

[50]

Gu, Shixiang, et al. "Continuous Deep Q-Learning with Model-based Acceleration." arXiv preprint arXiv:1603.00748 (2016).

[pdf]

(NAF)

[51]

Schulman, John, et al. "Trust region policy optimization." CoRR, abs/1502.05477 (2015).

[pdf]

(TRPO)

[52]

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.

[pdf]

(AlphaGo)

2.7 Deep Transfer Learning / Lifelong Learning / especially for RL

[53]

Bengio, Yoshua. "Deep Learning of Representations for Unsupervised and Transfer Learning." ICML Unsupervised and Transfer Learning 27 (2012): 17-36.

[pdf]

(A Tutorial)

[54]

Silver, Daniel L., Qiang Yang, and Lianghao Li. "Lifelong Machine Learning Systems: Beyond Learning Algorithms." AAAI Spring Symposium: Lifelong Machine Learning. 2013.

[pdf]

(A brief discussion about lifelong learning)

[55]

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015).

[pdf]

(Godfather's Work)

[56]

Rusu, Andrei A., et al. "Policy distillation." arXiv preprint arXiv:1511.06295 (2015).

[pdf]

(RL domain)

[57]

Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. "Actor-mimic: Deep multitask and transfer reinforcement learning." arXiv preprint arXiv:1511.06342 (2015).

[pdf]

(RL domain)

[58]

Rusu, Andrei A., et al. "Progressive neural networks." arXiv preprint arXiv:1606.04671 (2016).

[pdf]

(Outstanding Work, A novel idea)

2.8 One Shot Deep Learning

[59]

Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "Human-level concept learning through probabilistic program induction." Science 350.6266 (2015): 1332-1338.

[pdf]

(No Deep Learning,but worth reading)

[60]

Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "Siamese Neural Networks for One-shot Image Recognition."(2015)

[pdf]

[61]

Santoro, Adam, et al. "One-shot Learning with Memory-Augmented Neural Networks." arXiv preprint arXiv:1605.06065 (2016).

[pdf]

(A basic step to one shot learning)

[62]

Vinyals, Oriol, et al. "Matching Networks for One Shot Learning." arXiv preprint arXiv:1606.04080 (2016).

[pdf]

[63]

Hariharan, Bharath, and Ross Girshick. "Low-shot visual object recognition." arXiv preprint arXiv:1606.02819 (2016).

[pdf](A step to large data)

3 Applications

3.1 NLP(Natural Language Processing)

[1]

Antoine Bordes, et al. "Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing." AISTATS(2012)

[pdf]

[2]

Mikolov, et al. "Distributed representations of words and phrases and their compositionality." ANIPS(2013): 3111-3119

[pdf]

(word2vec)

[3]

Sutskever, et al. "“Sequence to sequence learning with neural networks." ANIPS(2014)

[pdf]

[4]

Ankit Kumar, et al. "“Ask Me Anything: Dynamic Memory Networks for Natural Language Processing." arXiv preprint arXiv:1506.07285(2015)

[pdf]

[5]

Yoon Kim, et al. "Character-Aware Neural Language Models." NIPS(2015) arXiv preprint arXiv:1508.06615(2015)

[pdf]

[6]

Jason Weston, et al. "Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks." arXiv preprint arXiv:1502.05698(2015)

[pdf]

(bAbI tasks)

[7]

Karl Moritz Hermann, et al. "Teaching Machines to Read and Comprehend." arXiv preprint arXiv:1506.03340(2015)

[pdf](CNN/DailyMail cloze style questions)

[8]

Alexis Conneau, et al. "Very Deep Convolutional Networks for Natural Language Processing." arXiv preprint arXiv:1606.01781(2016)

[pdf]

(state-of-the-art in text classification)

[9]

Armand Joulin, et al. "Bag of Tricks for Efficient Text Classification." arXiv preprint arXiv:1607.01759(2016)

[pdf]

(slightly worse than state-of-the-art, but a lot faster)

3.2 Object Detection

[1]

Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. "Deep neural networks for object detection." Advances in Neural Information Processing Systems. 2013.

[pdf]

[2]

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.

[pdf]

(RCNN)

[3]

He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." European Conference on Computer Vision. Springer International Publishing, 2014.

[pdf]

(SPPNet)

[4]

Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015.

[pdf]

[5]

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.

[pdf]

[6]

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." arXiv preprint arXiv:1506.02640 (2015).

[pdf]

(YOLO,Oustanding Work, really practical)

[7]

Liu, Wei, et al. "SSD: Single Shot MultiBox Detector." arXiv preprint arXiv:1512.02325 (2015).

[pdf]

[8]

Dai, Jifeng, et al. "R-FCN: Object Detection via Region-based Fully Convolutional Networks." arXiv preprint arXiv:1605.06409 (2016).

[pdf]

[9]

He, Gkioxari, et al. "Mask R-CNN" arXiv preprint arXiv:1703.06870 (2017).

[pdf]

3.3 Visual Tracking

[1]

Wang, Naiyan, and Dit-Yan Yeung. "Learning a deep compact image representation for visual tracking." Advances in neural information processing systems. 2013.

[pdf]

(First Paper to do visual tracking using Deep Learning,DLT Tracker)

[2]

Wang, Naiyan, et al. "Transferring rich feature hierarchies for robust visual tracking." arXiv preprint arXiv:1501.04587 (2015).

[pdf]

(SO-DLT)

[3]

Wang, Lijun, et al. "Visual tracking with fully convolutional networks." Proceedings of the IEEE International Conference on Computer Vision. 2015.

[pdf]

(FCNT)

[4]

Held, David, Sebastian Thrun, and Silvio Savarese. "Learning to Track at 100 FPS with Deep Regression Networks." arXiv preprint arXiv:1604.01802 (2016).

[pdf]

(GOTURN,Really fast as a deep learning method,but still far behind un-deep-learning methods)

[5]

Bertinetto, Luca, et al. "Fully-Convolutional Siamese Networks for Object Tracking." arXiv preprint arXiv:1606.09549 (2016).

[pdf]

(SiameseFC,New state-of-the-art for real-time object tracking)

[6]

Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. "Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking." ECCV (2016)

[pdf]

(C-COT)

[7]

Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv preprint arXiv:1608.07242 (2016).

[pdf]

(VOT2016 Winner,TCNN)

3.4 Image Caption

[1]

Farhadi,Ali,etal. "Every picture tells a story: Generating sentences from images". In Computer VisionECCV 2010. Springer Berlin Heidelberg:15-29, 2010.

[pdf]

[2]

Kulkarni, Girish, et al. "Baby talk: Understanding and generating image descriptions". In Proceedings of the 24th CVPR, 2011.

[pdf]
[3]

Vinyals, Oriol, et al. "Show and tell: A neural image caption generator". In arXiv preprint arXiv:1411.4555, 2014.

[pdf]
[4]

Donahue, Jeff, et al. "Long-term recurrent convolutional networks for visual recognition and description". In arXiv preprint arXiv:1411.4389 ,2014.

[pdf]

[5]

Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions". In arXiv preprint arXiv:1412.2306, 2014.

[pdf]
[6]

Karpathy, Andrej, Armand Joulin, and Fei Fei F. Li. "Deep fragment embeddings for bidirectional image sentence mapping". In Advances in neural information processing systems, 2014.

[pdf]
[7]

Fang, Hao, et al. "From captions to visual concepts and back". In arXiv preprint arXiv:1411.4952, 2014.

[pdf]

Chen, Xinlei, and C. Lawrence Zitnick. "Learning a recurrent visual representation for image caption generation". In arXiv preprint arXiv:1411.5654, 2014.

[pdf]
[9]

Mao, Junhua, et al. "Deep captioning with multimodal recurrent neural networks (m-rnn)". In arXiv preprint arXiv:1412.6632, 2014.

[pdf]
[10]

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention". In arXiv preprint arXiv:1502.03044, 2015.

[pdf]

3.5 Machine Translation

Some milestone papers are listed in RNN / Seq-to-Seq topic.

[1]

Luong, Minh-Thang, et al. "Addressing the rare word problem in neural machine translation." arXiv preprint arXiv:1410.8206 (2014).

[pdf]

[2]

Sennrich, et al. "Neural Machine Translation of Rare Words with Subword Units". In arXiv preprint arXiv:1508.07909, 2015.

[pdf]

[3]

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-based neural machine translation." arXiv preprint arXiv:1508.04025 (2015).

[pdf]

[4]

Chung, et al. "A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation". In arXiv preprint arXiv:1603.06147, 2016.

[pdf]

[5]

Lee, et al. "Fully Character-Level Neural Machine Translation without Explicit Segmentation". In arXiv preprint arXiv:1610.03017, 2016.

[pdf]

[6]

Wu, Schuster, Chen, Le, et al. "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation". In arXiv preprint arXiv:1609.08144v2, 2016.

[pdf]

(Milestone)

3.6 Robotics

[1]

Koutník, Jan, et al. "Evolving large-scale neural networks for vision-based reinforcement learning." Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013.

[pdf]

[2]

Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." Journal of Machine Learning Research 17.39 (2016): 1-40.

[pdf]

[3]

Pinto, Lerrel, and Abhinav Gupta. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." arXiv preprint arXiv:1509.06825 (2015).

[pdf]

[4]

Levine, Sergey, et al. "Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection." arXiv preprint arXiv:1603.02199 (2016).

[pdf]

[5]

Zhu, Yuke, et al. "Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning." arXiv preprint arXiv:1609.05143 (2016).

[pdf]

[6]

Yahya, Ali, et al. "Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search." arXiv preprint arXiv:1610.00673 (2016).

[pdf]

[7]

Gu, Shixiang, et al. "Deep Reinforcement Learning for Robotic Manipulation." arXiv preprint arXiv:1610.00633 (2016).

[pdf]

[8]

A Rusu, M Vecerik, Thomas Roth?rl, N Heess, R Pascanu, R Hadsell."Sim-to-Real Robot Learning from Pixels with Progressive Nets." arXiv preprint arXiv:1610.04286 (2016).

[pdf]

[9]

Mirowski, Piotr, et al. "Learning to navigate in complex environments." arXiv preprint arXiv:1611.03673 (2016).

3.7 Art

[1]

Mordvintsev, Alexander; Olah, Christopher; Tyka, Mike (2015). "Inceptionism: Going Deeper into Neural Networks". Google Research.

[html]

(Deep Dream)

[2]

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015).

[pdf]

(Outstanding Work, most successful method currently)

[3]

Zhu, Jun-Yan, et al. "Generative Visual Manipulation on the Natural Image Manifold." European Conference on Computer Vision. Springer International Publishing, 2016.

[pdf]

(iGAN)

[4]

Champandard, Alex J. "Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks." arXiv preprint arXiv:1603.01768 (2016).

[pdf]

(Neural Doodle)

[5]

Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful Image Colorization." arXiv preprint arXiv:1603.08511 (2016).

[pdf]

[6]

Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. "Perceptual losses for real-time style transfer and super-resolution." arXiv preprint arXiv:1603.08155 (2016).

[pdf]

[7]Vincent Dumoulin, Jonathon Shlens and Manjunath Kudlur. "A learned representation for artistic style." arXiv preprint arXiv:1610.07629 (2016).[pdf]

[8]Gatys, Leon and Ecker, et al."Controlling Perceptual Factors in Neural Style Transfer." arXiv preprint arXiv:1611.07865 (2016).[pdf]

[9]Ulyanov, Dmitry and Lebedev, Vadim, et al. "Texture Networks: Feed-forward Synthesis of Textures and Stylized Images." arXiv preprint arXiv:1603.03417(2016).[pdf](texture generation and style transfer)## 3.8 Object Segmentation

[1]J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation.” in CVPR, 2015.[pdf]

[2]L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. "Semantic image segmentation with deep convolutional nets and fully connected crfs." In ICLR, 2015.[pdf]

[3]Pinheiro, P.O., Collobert, R., Dollar, P. "Learning to segment object candidates." In: NIPS. 2015.[pdf]

[4]Dai, J., He, K., Sun, J. "Instance-aware semantic segmentation via multi-task network cascades." in CVPR. 2016[pdf]

[5]Dai, J., He, K., Sun, J. "Instance-sensitive Fully Convolutional Networks." arXiv preprint arXiv:1603.08678 (2016).[pdf]

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市象浑,隨后出現(xiàn)的幾起案子笤成,更是在濱河造成了極大的恐慌百宇,老刑警劉巖史翘,帶你破解...
    沈念sama閱讀 211,743評(píng)論 6 492
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異讶迁,居然都是意外死亡肴捉,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,296評(píng)論 3 385
  • 文/潘曉璐 我一進(jìn)店門乏德,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)撤奸,“玉大人,你說(shuō)我怎么就攤上這事喊括‰使希” “怎么了?”我有些...
    開封第一講書人閱讀 157,285評(píng)論 0 348
  • 文/不壞的土叔 我叫張陵郑什,是天一觀的道長(zhǎng)府喳。 經(jīng)常有香客問(wèn)我,道長(zhǎng)蘑拯,這世上最難降的妖魔是什么钝满? 我笑而不...
    開封第一講書人閱讀 56,485評(píng)論 1 283
  • 正文 為了忘掉前任兜粘,我火速辦了婚禮,結(jié)果婚禮上弯蚜,老公的妹妹穿的比我還像新娘孔轴。我一直安慰自己,他們只是感情好碎捺,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,581評(píng)論 6 386
  • 文/花漫 我一把揭開白布路鹰。 她就那樣靜靜地躺著,像睡著了一般收厨。 火紅的嫁衣襯著肌膚如雪晋柱。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,821評(píng)論 1 290
  • 那天帽氓,我揣著相機(jī)與錄音趣斤,去河邊找鬼。 笑死黎休,一個(gè)胖子當(dāng)著我的面吹牛浓领,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播势腮,決...
    沈念sama閱讀 38,960評(píng)論 3 408
  • 文/蒼蘭香墨 我猛地睜開眼联贩,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了捎拯?” 一聲冷哼從身側(cè)響起泪幌,我...
    開封第一講書人閱讀 37,719評(píng)論 0 266
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎署照,沒想到半個(gè)月后祸泪,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,186評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡建芙,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,516評(píng)論 2 327
  • 正文 我和宋清朗相戀三年没隘,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片禁荸。...
    茶點(diǎn)故事閱讀 38,650評(píng)論 1 340
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡右蒲,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出赶熟,到底是詐尸還是另有隱情瑰妄,我是刑警寧澤,帶...
    沈念sama閱讀 34,329評(píng)論 4 330
  • 正文 年R本政府宣布映砖,位于F島的核電站间坐,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜眶诈,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,936評(píng)論 3 313
  • 文/蒙蒙 一涨醋、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧逝撬,春花似錦浴骂、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,757評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至狡相,卻和暖如春梯轻,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背尽棕。 一陣腳步聲響...
    開封第一講書人閱讀 31,991評(píng)論 1 266
  • 我被黑心中介騙來(lái)泰國(guó)打工喳挑, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人滔悉。 一個(gè)月前我還...
    沈念sama閱讀 46,370評(píng)論 2 360
  • 正文 我出身青樓伊诵,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親回官。 傳聞我的和親對(duì)象是個(gè)殘疾皇子曹宴,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,527評(píng)論 2 349

推薦閱讀更多精彩內(nèi)容

  • (一) 過(guò)年回家笛坦,不可避免的遇上了老同學(xué)一起聚會(huì),老朋友一起吃飯之類的活動(dòng)苔巨。 入席就坐后版扩,一邊與經(jīng)年不見的這些老朋...
    赤木與森閱讀 7,755評(píng)論 63 164
  • 學(xué)校寢室,早上起來(lái)洗臉侄泽,突然想大便了资厉,急忙扯了點(diǎn)衛(wèi)生紙,然后順手把毛巾也掛在了脖子上蔬顾,進(jìn)去蹲下后就把衛(wèi)生紙夾在內(nèi)褲...
    范末末閱讀 263評(píng)論 2 2
  • 小時(shí)候曾經(jīng)學(xué)過(guò)詩(shī)經(jīng)里的一篇文章《氓》诀豁,里面有一句話讓我讀了就一直記到現(xiàn)在“士之耽兮,猶可說(shuō)也窥妇;女之耽兮舷胜,不可說(shuō)也。...
    su小su閱讀 256評(píng)論 0 0
  • 特種兵和醫(yī)生在外出維和時(shí)候相遇,全世界都可能因?yàn)楦鞣N原因死掉烹骨,但主角就算身處炸彈叢林都能安然無(wú)恙翻伺,他們經(jīng)過(guò)千難萬(wàn)險(xiǎn)...
    我是隱形的閱讀 648評(píng)論 3 25