面試題
如何保證緩存與數(shù)據(jù)庫的雙寫一致性?
面試官心理分析
你只要用緩存译打,就可能會涉及到緩存與數(shù)據(jù)庫雙存儲雙寫耗拓,你只要是雙寫,就一定會有數(shù)據(jù)一致性的問題奏司,那么你如何解決一致性問題乔询?
面試題剖析
一般來說,如果允許緩存可以稍微的跟數(shù)據(jù)庫偶爾有不一致的情況韵洋,也就是說如果你的系統(tǒng)不是嚴(yán)格要求 “緩存+數(shù)據(jù)庫” 必須保持一致性的話竿刁,最好不要做這個方案黄锤,即:讀請求和寫請求串行化,串到一個內(nèi)存隊列里去食拜。
串行化可以保證一定不會出現(xiàn)不一致的情況鸵熟,但是它也會導(dǎo)致系統(tǒng)的吞吐量大幅度降低,用比正常情況下多幾倍的機器去支撐線上的一個請求负甸。
Cache Aside Pattern
最經(jīng)典的緩存+數(shù)據(jù)庫讀寫的模式流强,就是 Cache Aside Pattern。
- 讀的時候呻待,先讀緩存打月,緩存沒有的話,就讀數(shù)據(jù)庫蚕捉,然后取出數(shù)據(jù)后放入緩存奏篙,同時返回響應(yīng)。
- 更新的時候迫淹,先更新數(shù)據(jù)庫秘通,然后再刪除緩存。
為什么是刪除緩存敛熬,而不是更新緩存肺稀?
原因很簡單,很多時候荸型,在復(fù)雜點的緩存場景盹靴,緩存不單單是數(shù)據(jù)庫中直接取出來的值。
比如可能更新了某個表的一個字段瑞妇,然后其對應(yīng)的緩存稿静,是需要查詢另外兩個表的數(shù)據(jù)并進(jìn)行運算,才能計算出緩存最新的值的辕狰。
另外更新緩存的代價有時候是很高的改备。是不是說,每次修改數(shù)據(jù)庫的時候蔓倍,都一定要將其對應(yīng)的緩存更新一份悬钳?也許有的場景是這樣,但是對于比較復(fù)雜的緩存數(shù)據(jù)計算的場景偶翅,就不是這樣了默勾。如果你頻繁修改一個緩存涉及的多個表,緩存也頻繁更新聚谁。但是問題在于母剥,這個緩存到底會不會被頻繁訪問到?
舉個栗子,一個緩存涉及的表的字段环疼,在 1 分鐘內(nèi)就修改了 20 次习霹,或者是 100 次,那么緩存更新 20 次炫隶、100 次淋叶;但是這個緩存在 1 分鐘內(nèi)只被讀取了 1 次,有大量的冷數(shù)據(jù)伪阶。實際上煞檩,如果你只是刪除緩存的話,那么在 1 分鐘內(nèi)望门,這個緩存不過就重新計算一次而已形娇,開銷大幅度降低。用到緩存才去算緩存筹误。
其實刪除緩存,而不是更新緩存癣缅,就是一個 lazy 計算的思想厨剪,不要每次都重新做復(fù)雜的計算,不管它會不會用到友存,而是讓它到需要被使用的時候再重新計算祷膳。像 mybatis,hibernate屡立,都有懶加載思想直晨。查詢一個部門,部門帶了一個員工的 list膨俐,沒有必要說每次查詢部門勇皇,都把里面的 1000 個員工的數(shù)據(jù)也同時查出來啊。80% 的情況焚刺,查這個部門敛摘,就只是要訪問這個部門的信息就可以了。先查部門乳愉,同時要訪問里面的員工兄淫,那么這個時候只有在你要訪問里面的員工的時候,才會去數(shù)據(jù)庫里面查詢 1000 個員工蔓姚。
最初級的緩存不一致問題及解決方案
問題:先更新數(shù)據(jù)庫捕虽,再刪除緩存。如果刪除緩存失敗了坡脐,那么會導(dǎo)致數(shù)據(jù)庫中是新數(shù)據(jù)泄私,緩存中是舊數(shù)據(jù),數(shù)據(jù)就出現(xiàn)了不一致。
解決思路:先刪除緩存挖滤,再更新數(shù)據(jù)庫崩溪。如果數(shù)據(jù)庫更新失敗了,那么數(shù)據(jù)庫中是舊數(shù)據(jù)斩松,緩存中是空的伶唯,那么數(shù)據(jù)不會不一致。因為讀的時候緩存沒有惧盹,所以去讀了數(shù)據(jù)庫中的舊數(shù)據(jù)乳幸,然后更新到緩存中。
比較復(fù)雜的數(shù)據(jù)不一致問題分析
數(shù)據(jù)發(fā)生了變更钧椰,先刪除了緩存粹断,然后要去修改數(shù)據(jù)庫,此時還沒修改嫡霞。一個請求過來瓶埋,去讀緩存,發(fā)現(xiàn)緩存空了诊沪,去查詢數(shù)據(jù)庫养筒,查到了修改前的舊數(shù)據(jù),放到了緩存中端姚。隨后數(shù)據(jù)變更的程序完成了數(shù)據(jù)庫的修改晕粪。完了,數(shù)據(jù)庫和緩存中的數(shù)據(jù)不一樣了...
為什么上億流量高并發(fā)場景下渐裸,緩存會出現(xiàn)這個問題巫湘?
只有在對一個數(shù)據(jù)在并發(fā)的進(jìn)行讀寫的時候,才可能會出現(xiàn)這種問題昏鹃。其實如果說你的并發(fā)量很低的話尚氛,特別是讀并發(fā)很低,每天訪問量就 1 萬次盆顾,那么很少的情況下怠褐,會出現(xiàn)剛才描述的那種不一致的場景。但是問題是您宪,如果每天的是上億的流量奈懒,每秒并發(fā)讀是幾萬,每秒只要有數(shù)據(jù)更新的請求宪巨,就可能會出現(xiàn)上述的數(shù)據(jù)庫+緩存不一致的情況磷杏。
解決方案如下:
更新數(shù)據(jù)的時候,根據(jù)數(shù)據(jù)的唯一標(biāo)識捏卓,將操作路由之后极祸,發(fā)送到一個 jvm 內(nèi)部隊列中慈格。讀取數(shù)據(jù)的時候,如果發(fā)現(xiàn)數(shù)據(jù)不在緩存中遥金,那么將重新執(zhí)行“讀取數(shù)據(jù)+更新緩存”的操作浴捆,根據(jù)唯一標(biāo)識路由之后,也發(fā)送到同一個 jvm 內(nèi)部隊列中稿械。
一個隊列對應(yīng)一個工作線程选泻,每個工作線程串行拿到對應(yīng)的操作,然后一條一條的執(zhí)行美莫。這樣的話页眯,一個數(shù)據(jù)變更的操作,先刪除緩存厢呵,然后再去更新數(shù)據(jù)庫窝撵,但是還沒完成更新。此時如果一個讀請求過來襟铭,沒有讀到緩存碌奉,那么可以先將緩存更新的請求發(fā)送到隊列中,此時會在隊列中積壓寒砖,然后同步等待緩存更新完成道批。
這里有一個優(yōu)化點,一個隊列中入撒,其實多個更新緩存請求串在一起是沒意義的,因此可以做過濾椭岩,如果發(fā)現(xiàn)隊列中已經(jīng)有一個更新緩存的請求了茅逮,那么就不用再放個更新請求操作進(jìn)去了,直接等待前面的更新操作請求完成即可判哥。
待那個隊列對應(yīng)的工作線程完成了上一個操作的數(shù)據(jù)庫的修改之后献雅,才會去執(zhí)行下一個操作,也就是緩存更新的操作塌计,此時會從數(shù)據(jù)庫中讀取最新的值挺身,然后寫入緩存中。
如果請求還在等待時間范圍內(nèi)锌仅,不斷輪詢發(fā)現(xiàn)可以取到值了章钾,那么就直接返回;如果請求等待的時間超過一定時長热芹,那么這一次直接從數(shù)據(jù)庫中讀取當(dāng)前的舊值贱傀。
高并發(fā)的場景下,該解決方案要注意的問題:
- 讀請求長時阻塞
由于讀請求進(jìn)行了非常輕度的異步化伊脓,所以一定要注意讀超時的問題府寒,每個讀請求必須在超時時間范圍內(nèi)返回。
該解決方案,最大的風(fēng)險點在于說株搔,可能數(shù)據(jù)更新很頻繁剖淀,導(dǎo)致隊列中積壓了大量更新操作在里面,然后讀請求會發(fā)生大量的超時纤房,最后導(dǎo)致大量的請求直接走數(shù)據(jù)庫纵隔。務(wù)必通過一些模擬真實的測試,看看更新數(shù)據(jù)的頻率是怎樣的帆卓。
另外一點巨朦,因為一個隊列中,可能會積壓針對多個數(shù)據(jù)項的更新操作剑令,因此需要根據(jù)自己的業(yè)務(wù)情況進(jìn)行測試糊啡,可能需要部署多個服務(wù),每個服務(wù)分?jǐn)傄恍?shù)據(jù)的更新操作吁津。如果一個內(nèi)存隊列里居然會擠壓 100 個商品的庫存修改操作棚蓄,每個庫存修改操作要耗費 10ms 去完成,那么最后一個商品的讀請求碍脏,可能等待 10 * 100 = 1000ms = 1s 后梭依,才能得到數(shù)據(jù)耻陕,這個時候就導(dǎo)致讀請求的長時阻塞扩灯。
一定要做根據(jù)實際業(yè)務(wù)系統(tǒng)的運行情況淹魄,去進(jìn)行一些壓力測試筑公,和模擬線上環(huán)境忘古,去看看最繁忙的時候球涛,內(nèi)存隊列可能會擠壓多少更新操作珍促,可能會導(dǎo)致最后一個更新操作對應(yīng)的讀請求锨匆,會 hang 多少時間褥紫,如果讀請求在 200ms 返回姜性,如果你計算過后,哪怕是最繁忙的時候髓考,積壓 10 個更新操作部念,最多等待 200ms,那還可以的氨菇。
如果一個內(nèi)存隊列中可能積壓的更新操作特別多儡炼,那么你就要加機器,讓每個機器上部署的服務(wù)實例處理更少的數(shù)據(jù)门驾,那么每個內(nèi)存隊列中積壓的更新操作就會越少射赛。
其實根據(jù)之前的項目經(jīng)驗,一般來說奶是,數(shù)據(jù)的寫頻率是很低的楣责,因此實際上正常來說竣灌,在隊列中積壓的更新操作應(yīng)該是很少的。像這種針對讀高并發(fā)秆麸、讀緩存架構(gòu)的項目初嘹,一般來說寫請求是非常少的,每秒的 QPS 能到幾百就不錯了沮趣。
我們來實際粗略測算一下屯烦。
如果一秒有 500 的寫操作,如果分成 5 個時間片房铭,每 200ms 就 100 個寫操作驻龟,放到 20 個內(nèi)存隊列中,每個內(nèi)存隊列缸匪,可能就積壓 5 個寫操作翁狐。每個寫操作性能測試后,一般是在 20ms 左右就完成凌蔬,那么針對每個內(nèi)存隊列的數(shù)據(jù)的讀請求露懒,也就最多 hang 一會兒,200ms 以內(nèi)肯定能返回了砂心。
經(jīng)過剛才簡單的測算懈词,我們知道,單機支撐的寫 QPS 在幾百是沒問題的辩诞,如果寫 QPS 擴大了 10 倍坎弯,那么就擴容機器,擴容 10 倍的機器译暂,每個機器 20 個隊列荞怒。
- 讀請求并發(fā)量過高
這里還必須做好壓力測試,確保恰巧碰上上述情況的時候秧秉,還有一個風(fēng)險,就是突然間大量讀請求會在幾十毫秒的延時 hang 在服務(wù)上衰抑,看服務(wù)能不能扛的住象迎,需要多少機器才能扛住最大的極限情況的峰值。
但是因為并不是所有的數(shù)據(jù)都在同一時間更新呛踊,緩存也不會同一時間失效砾淌,所以每次可能也就是少數(shù)數(shù)據(jù)的緩存失效了,然后那些數(shù)據(jù)對應(yīng)的讀請求過來谭网,并發(fā)量應(yīng)該也不會特別大汪厨。
- 多服務(wù)實例部署的請求路由
可能這個服務(wù)部署了多個實例,那么必須保證說愉择,執(zhí)行數(shù)據(jù)更新操作劫乱,以及執(zhí)行緩存更新操作的請求织中,都通過 Nginx 服務(wù)器路由到相同的服務(wù)實例上。
比如說衷戈,對同一個商品的讀寫請求狭吼,全部路由到同一臺機器上≈掣荆可以自己去做服務(wù)間的按照某個請求參數(shù)的 hash 路由刁笙,也可以用 Nginx 的 hash 路由功能等等。
- 熱點商品的路由問題谦趣,導(dǎo)致請求的傾斜
萬一某個商品的讀寫請求特別高疲吸,全部打到相同的機器的相同的隊列里面去了,可能會造成某臺機器的壓力過大前鹅。就是說摘悴,因為只有在商品數(shù)據(jù)更新的時候才會清空緩存,然后才會導(dǎo)致讀寫并發(fā)嫡纠,所以其實要根據(jù)業(yè)務(wù)系統(tǒng)去看烦租,如果更新頻率不是太高的話,這個問題的影響并不是特別大除盏,但是的確可能某些機器的負(fù)載會高一些叉橱。
關(guān)注我的微信公眾號,第一時間獲得我的博客的更新提醒,更有驚喜等著你喲~
掃一掃下方二維碼或搜索微信號shenshan_laoyuan關(guān)注
本篇文章由一文多發(fā)平臺ArtiPub自動發(fā)布