if you can't explain it simply,you don't understand it well enough(如果你不能簡(jiǎn)單地解釋它,那你就還沒(méi)有充分理解它)--Albert Einstein 阿爾伯特·愛(ài)因斯坦
the fundamental concepts of data science(數(shù)據(jù)科學(xué)的基本概念)
基礎(chǔ)概念歸3類(lèi):
1. 數(shù)據(jù)科學(xué)應(yīng)用到場(chǎng)景的通用概念放案;
2. 用數(shù)據(jù)分析來(lái)思考的通用思想秽澳;
3. 從數(shù)據(jù)提取業(yè)務(wù)知識(shí)的通用方法碘勉。
applying our fundamental concepts to a new problem:mining mobile device data(將我們的基本概念應(yīng)用于一個(gè)新問(wèn)題:移動(dòng)設(shè)備數(shù)據(jù)挖掘)
這里強(qiáng)調(diào)一個(gè)在數(shù)據(jù)分析的時(shí)候時(shí)刻要回憶的點(diǎn)垄潮,那就是,targeting variable章咧。
changing the way we think about solutions to business problems(改變我們思考解決商業(yè)問(wèn)題的方法)
what data can't do:humans in the loop倦西,revisited(數(shù)據(jù)不能做什么:人類(lèi)在循環(huán)中,重溫)
the meaning of data is colored by our own beliefs
privacy慧邮,ethics调限,and mining data about individuals(隱私、道德和個(gè)人數(shù)據(jù)挖掘)
is there more to data science误澳?(數(shù)據(jù)科學(xué)還有別的東西嗎)
final example:from crowd-sourcing to cloud-sourcing(最后一個(gè)例子:從眾包到云外包)
Amazon mechanical turk亞馬遜(Amazon)的土耳其機(jī)器人(MTurk)耻矮,就是你發(fā)布一個(gè)任務(wù)并公布這個(gè)任務(wù)的價(jià)格,后臺(tái)有一批真人領(lǐng)取任務(wù)忆谓,完成后由你付錢(qián)裆装。當(dāng)然你也可以是后臺(tái)那批苦工,領(lǐng)任務(wù)賺錢(qián)倡缠。
final words(最后的話)
讀完這本書(shū)并且理解完整哨免,那么80%情況下你不會(huì)被所謂的數(shù)據(jù)科學(xué)家忽悠。┏(^0^)┛