自行車(chē)租賃數(shù)據(jù)分析與可視化

本文采編自寒小陽(yáng)老師上課講義

案例:自行車(chē)租賃數(shù)據(jù)分析與可視化 {#案例:自行車(chē)租賃數(shù)據(jù)分析與可視化}

導(dǎo)入數(shù)據(jù),做簡(jiǎn)單的數(shù)據(jù)處理 {#步驟1:導(dǎo)入數(shù)據(jù)走趋,做簡(jiǎn)單的數(shù)據(jù)處理}

import pandas as pd # 讀取數(shù)據(jù)到DataFrame
import urllib # 獲取網(wǎng)絡(luò)數(shù)據(jù)
import tempfile # 創(chuàng)建臨時(shí)文件系統(tǒng)
import shutil # 文件操作
import zipfile # 壓縮解壓

temp_dir = tempfile.mkdtemp() # 建立臨時(shí)目錄
data_source = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip' # 網(wǎng)絡(luò)數(shù)據(jù)地址
zipname = temp_dir + '/Bike-Sharing-Dataset.zip' # 拼接文件和路徑
urllib.urlretrieve(data_source, zipname) # 獲得數(shù)據(jù)

zip_ref = zipfile.ZipFile(zipname, 'r') # 創(chuàng)建一個(gè)ZipFile對(duì)象處理壓縮文件
zip_ref.extractall(temp_dir) # 解壓
zip_ref.close()

daily_path = 'data/day.csv'
daily_data = pd.read_csv(daily_path) # 讀取csv文件
daily_data['dteday'] = pd.to_datetime(daily_data['dteday']) # 把字符串?dāng)?shù)據(jù)傳換成日期數(shù)據(jù)
drop_list = ['instant', 'season', 'yr', 'mnth', 'holiday', 'workingday', 'weathersit', 'atemp', 'hum'] # 不關(guān)注的列
daily_data.drop(drop_list, inplace = True, axis = 1) # inplace=true在對(duì)象上直接操作

shutil.rmtree(temp_dir) # 刪除臨時(shí)文件目錄

daily_data.head() # 預(yù)覽數(shù)據(jù)

配置全局參數(shù) {#步驟2:配置參數(shù)}

from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
# 在notebook中顯示繪圖結(jié)果
%matplotlib inline

# 設(shè)置一些全局的資源參數(shù)衅金,可以進(jìn)行個(gè)性化修改
import matplotlib
# 設(shè)置圖片尺寸 14" x 7"
# rc: resource configuration
matplotlib.rc('figure', figsize = (14, 7))
# 設(shè)置字體 14
matplotlib.rc('font', size = 14)
# 不顯示頂部和右側(cè)的坐標(biāo)線(xiàn)
matplotlib.rc('axes.spines', top = False, right = False)
# 不顯示網(wǎng)格
matplotlib.rc('axes', grid = False)
# 設(shè)置背景顏色是白色
matplotlib.rc('axes', facecolor = 'white')

關(guān)聯(lián)分析 {#步驟3:關(guān)聯(lián)分析}

# 包裝一個(gè)散點(diǎn)圖的函數(shù)便于復(fù)用
def scatterplot(x_data, y_data, x_label, y_label, title):

    # 創(chuàng)建一個(gè)繪圖對(duì)象
    fig, ax = plt.subplots()

    # 設(shè)置數(shù)據(jù)、點(diǎn)的大小簿煌、點(diǎn)的顏色和透明度
    ax.scatter(x_data, y_data, s = 10, color = '#539caf', alpha = 0.75) 

    # 添加標(biāo)題和坐標(biāo)說(shuō)明
    ax.set_title(title)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)

# 繪制散點(diǎn)圖
scatterplot(x_data = daily_data['temp']
            , y_data = daily_data['cnt']
            , x_label = 'Normalized temperature (C)'
            , y_label = 'Check outs'
            , title = 'Number of Check Outs vs Temperature')
# 線(xiàn)性回歸
import statsmodels.api as sm # 最小二乘
from statsmodels.stats.outliers_influence import summary_table # 獲得匯總信息
x = sm.add_constant(daily_data['temp']) # 其實(shí)可以看成這個(gè)series 前面加了一列 變成datadrame 這一列全為1 作為線(xiàn)性回歸的常數(shù)項(xiàng)
y = daily_data['cnt']
regr = sm.OLS(y, x) # 普通最小二乘模型氮唯,ordinary least square model
res = regr.fit()
# 從模型獲得擬合數(shù)據(jù)
st, data, ss2 = summary_table(res, alpha=0.05) # 置信水平alpha=5%,st數(shù)據(jù)匯總姨伟,data數(shù)據(jù)詳情惩琉,ss2數(shù)據(jù)列名
fitted_values = data[:,2]#第三列是擬合值 如果有興趣可以自己去這個(gè)庫(kù)的包 返回的data是一個(gè)很大的dataframe 每一列都是它的含義

# 包裝曲線(xiàn)繪制函數(shù)
def lineplot(x_data, y_data, x_label, y_label, title):
    # 創(chuàng)建繪圖對(duì)象
    _, ax = plt.subplots()

    # 繪制擬合曲線(xiàn),lw=linewidth夺荒,alpha=transparancy
    ax.plot(x_data, y_data, lw = 2, color = '#539caf', alpha = 1)

    # 添加標(biāo)題和坐標(biāo)說(shuō)明
    ax.set_title(title)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)

# 調(diào)用繪圖函數(shù)
lineplot(x_data = daily_data['temp']
         , y_data = fitted_values
         , x_label = 'Normalized temperature (C)'
         , y_label = 'Check outs'
         , title = 'Line of Best Fit for Number of Check Outs vs Temperature')

帶置信區(qū)間的曲線(xiàn)圖 {#帶置信區(qū)間的曲線(xiàn)圖}

  • 評(píng)估曲線(xiàn)擬合結(jié)果
# 獲得5%置信區(qū)間的上下界
predict_mean_ci_low, predict_mean_ci_upp = data[:,4:6].T# 4.5列為5%置信區(qū)間的上下界

# 創(chuàng)建置信區(qū)間DataFrame瞒渠,上下界
CI_df = pd.DataFrame(columns = ['x_data', 'low_CI', 'upper_CI'])
CI_df['x_data'] = daily_data['temp']
CI_df['low_CI'] = predict_mean_ci_low
CI_df['upper_CI'] = predict_mean_ci_upp
CI_df.sort_values('x_data', inplace = True) # 根據(jù)x_data進(jìn)行排序

# 繪制置信區(qū)間
def lineplotCI(x_data, y_data, sorted_x, low_CI, upper_CI, x_label, y_label, title):
    # 創(chuàng)建繪圖對(duì)象
    _, ax = plt.subplots()

    # 繪制預(yù)測(cè)曲線(xiàn)
    ax.plot(x_data, y_data, lw = 1, color = '#539caf', alpha = 1, label = 'Fit')
    # 繪制置信區(qū)間良蒸,順序填充
    ax.fill_between(sorted_x, low_CI, upper_CI, color = '#539caf', alpha = 0.4, label = '95% CI')
    # 添加標(biāo)題和坐標(biāo)說(shuō)明
    ax.set_title(title)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)

    # 顯示圖例,配合label參數(shù)伍玖,loc=“best”自適應(yīng)方式
    ax.legend(loc = 'best')

# Call the function to create plot
lineplotCI(x_data = daily_data['temp']
           , y_data = fitted_values
           , sorted_x = CI_df['x_data']
           , low_CI = CI_df['low_CI']
           , upper_CI = CI_df['upper_CI']
           , x_label = 'Normalized temperature (C)'
           , y_label = 'Check outs'
           , title = 'Line of Best Fit for Number of Check Outs vs Temperature')

雙坐標(biāo)曲線(xiàn)圖 {#雙坐標(biāo)曲線(xiàn)圖}

  • 曲線(xiàn)擬合不滿(mǎn)足置信閾值時(shí)嫩痰,考慮增加獨(dú)立變量
  • 分析不同尺度多變量的關(guān)系
# 雙縱坐標(biāo)繪圖函數(shù)
def lineplot2y(x_data, x_label, y1_data, y1_color, y1_label, y2_data, y2_color, y2_label, title):
    _, ax1 = plt.subplots()
    ax1.plot(x_data, y1_data, color = y1_color)
    # 添加標(biāo)題和坐標(biāo)說(shuō)明
    ax1.set_ylabel(y1_label, color = y1_color)
    ax1.set_xlabel(x_label)
    ax1.set_title(title)

    ax2 = ax1.twinx() # 兩個(gè)繪圖對(duì)象共享橫坐標(biāo)軸
    ax2.plot(x_data, y2_data, color = y2_color)
    ax2.set_ylabel(y2_label, color = y2_color)
    # 右側(cè)坐標(biāo)軸可見(jiàn)
    ax2.spines['right'].set_visible(True)

# 調(diào)用繪圖函數(shù)
lineplot2y(x_data = daily_data['dteday']
           , x_label = 'Day'
           , y1_data = daily_data['cnt']
           , y1_color = '#539caf'
           , y1_label = 'Check outs'
           , y2_data = daily_data['windspeed']
           , y2_color = '#7663b0'
           , y2_label = 'Normalized windspeed'
           , title = 'Check Outs and Windspeed Over Time')

分布分析? {#步驟4:分布分析}

直方圖(灰度圖) {#灰度圖}

  • 粗略區(qū)間計(jì)數(shù)
# 繪制灰度圖的函數(shù)
def histogram(data, x_label, y_label, title):
    _, ax = plt.subplots()
    res = ax.hist(data, color = '#539caf', bins=10) # 設(shè)置bin的數(shù)量
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)
    return res

# 繪圖函數(shù)調(diào)用
res = histogram(data = daily_data['registered']
           , x_label = 'Check outs'
           , y_label = 'Frequency'
           , title = 'Distribution of Registered Check Outs')
res[0] # value of bins
res[1] # boundary of bins

堆疊直方圖

  • 比較兩個(gè)分布
# 繪制堆疊的直方圖
def overlaid_histogram(data1, data1_name, data1_color, data2, data2_name, data2_color, x_label, y_label, title):
    # 歸一化數(shù)據(jù)區(qū)間,對(duì)齊兩個(gè)直方圖的bins
    max_nbins = 10
    data_range = [min(min(data1), min(data2)), max(max(data1), max(data2))]
    binwidth = (data_range[1] - data_range[0]) / max_nbins
    bins = np.arange(data_range[0], data_range[1] + binwidth, binwidth) # 生成直方圖bins區(qū)間

    # Create the plot
    _, ax = plt.subplots()
    ax.hist(data1, bins = bins, color = data1_color, alpha = 1, label = data1_name)
    ax.hist(data2, bins = bins, color = data2_color, alpha = 0.75, label = data2_name)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)
    ax.legend(loc = 'best')

# Call the function to create plot
overlaid_histogram(data1 = daily_data['registered']
                   , data1_name = 'Registered'
                   , data1_color = '#539caf'
                   , data2 = daily_data['casual']
                   , data2_name = 'Casual'
                   , data2_color = '#7663b0'
                   , x_label = 'Check outs'
                   , y_label = 'Frequency'
                   , title = 'Distribution of Check Outs By Type')

registered:注冊(cè)的分布窍箍,正態(tài)分布串纺,why

casual:偶然的分布,疑似指數(shù)分布仔燕,why

以上兩個(gè)問(wèn)題均可以查詢(xún)這兩個(gè)概念得出結(jié)論

密度圖 {#密度圖}

  • 精細(xì)刻畫(huà)概率分布

KDE: kernal density estimate

$$\hat{f}h(x) = \frac{1}{n}\sum\limits{i=1}^n K_h(x-x_i) = \frac{1}{nh}\sum\limits_{i=1}^n K(\frac{x-x_i}{h})$$

# 計(jì)算概率密度
from scipy.stats import gaussian_kde
data = daily_data['registered']
density_est = gaussian_kde(data) # kernal density estimate: https://en.wikipedia.org/wiki/Kernel_density_estimation
# 控制平滑程度造垛,數(shù)值越大魔招,越平滑
density_est.covariance_factor = lambda : .3
density_est._compute_covariance()
x_data = np.arange(min(data), max(data), 200)

# 繪制密度估計(jì)曲線(xiàn)
def densityplot(x_data, density_est, x_label, y_label, title):
    _, ax = plt.subplots()
    ax.plot(x_data, density_est(x_data), color = '#539caf', lw = 2)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)

# 調(diào)用繪圖函數(shù)
densityplot(x_data = x_data
            , density_est = density_est
            , x_label = 'Check outs'
            , y_label = 'Frequency'
            , title = 'Distribution of Registered Check Outs')

組間分析 {#步驟5:組間分析}

  • 組間定量比較
  • 分組粒度
  • 組間聚類(lèi)

柱狀圖 {#柱狀圖}

  • 一級(jí)類(lèi)間均值方差比較
# 分天分析統(tǒng)計(jì)特征
mean_total_co_day = daily_data[['weekday', 'cnt']].groupby('weekday').agg([np.mean, np.std])
mean_total_co_day.columns = mean_total_co_day.columns.droplevel()

# 定義繪制柱狀圖的函數(shù)
def barplot(x_data, y_data, error_data, x_label, y_label, title):
    _, ax = plt.subplots()
    # 柱狀圖
    ax.bar(x_data, y_data, color = '#539caf', align = 'center')
    # 繪制方差
    # ls='none'去掉bar之間的連線(xiàn)
    ax.errorbar(x_data, y_data, yerr = error_data, color = '#297083', ls = 'none', lw = 5)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)

# 繪圖函數(shù)調(diào)用
barplot(x_data = mean_total_co_day.index.values
        , y_data = mean_total_co_day['mean']
        , error_data = mean_total_co_day['std']
        , x_label = 'Day of week'
        , y_label = 'Check outs'
        , title = 'Total Check Outs By Day of Week (0 = Sunday)')
mean_total_co_day.columns
daily_data[['weekday', 'cnt']].groupby('weekday').agg([np.mean, np.std])

        registered    casual
weekday     
0   4228.828571 1872.496462
1   4338.123810 1793.073897
2   4510.663462 1826.911602
3   4548.538462 2038.095680
4   4667.259615 1939.433165
5   4690.288462 1874.624762
6   4550.542857 2196.692969
# 分天統(tǒng)計(jì)注冊(cè)和偶然使用的情況
mean_by_reg_co_day = daily_data[['weekday', 'registered', 'casual']].groupby('weekday').mean()
# 分天統(tǒng)計(jì)注冊(cè)和偶然使用的占比
mean_by_reg_co_day['total'] = mean_by_reg_co_day['registered'] + mean_by_reg_co_day['casual']
mean_by_reg_co_day['reg_prop'] = mean_by_reg_co_day['registered'] / mean_by_reg_co_day['total']
mean_by_reg_co_day['casual_prop'] = mean_by_reg_co_day['casual'] / mean_by_reg_co_day['total']


# 繪制堆積柱狀圖
def stackedbarplot(x_data, y_data_list, y_data_names, colors, x_label, y_label, title):
    _, ax = plt.subplots()
    # 循環(huán)繪制堆積柱狀圖
    for i in range(0, len(y_data_list)):
        if i == 0:
            ax.bar(x_data, y_data_list[i], color = colors[i], align = 'center', label = y_data_names[i])
        else:
            # 采用堆積的方式晰搀,除了第一個(gè)分類(lèi),后面的分類(lèi)都從前一個(gè)分類(lèi)的柱狀圖接著畫(huà)
            # 用歸一化保證最終累積結(jié)果為1
            ax.bar(x_data, y_data_list[i], color = colors[i], bottom = y_data_list[i - 1], align = 'center', label = y_data_names[i])
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)
    ax.legend(loc = 'upper right') # 設(shè)定圖例位置

# 調(diào)用繪圖函數(shù)
stackedbarplot(x_data = mean_by_reg_co_day.index.values
               , y_data_list = [mean_by_reg_co_day['reg_prop'], mean_by_reg_co_day['casual_prop']]
               , y_data_names = ['Registered', 'Casual']
               , colors = ['#539caf', '#7663b0']
               , x_label = 'Day of week'
               , y_label = 'Proportion of check outs'
               , title = 'Check Outs By Registration Status and Day of Week (0 = Sunday)')
  • 從這幅圖你看出了什么办斑?工作日 VS 節(jié)假日

  • 為什么會(huì)有這樣的差別外恕?

分組柱狀圖 {#分組柱狀圖}

  • 多級(jí)類(lèi)間絕對(duì)數(shù)值比較
# 繪制分組柱狀圖的函數(shù)
def groupedbarplot(x_data, y_data_list, y_data_names, colors, x_label, y_label, title):
    _, ax = plt.subplots()
    # 設(shè)置每一組柱狀圖的寬度
    total_width = 0.8
    # 設(shè)置每一個(gè)柱狀圖的寬度
    ind_width = total_width / len(y_data_list)
    # 計(jì)算每一個(gè)柱狀圖的中心偏移
    alteration = np.arange(-total_width/2+ind_width/2, total_width/2+ind_width/2, ind_width)

    # 分別繪制每一個(gè)柱狀圖
    for i in range(0, len(y_data_list)):
        # 橫向散開(kāi)繪制
        ax.bar(x_data + alteration[i], y_data_list[i], color = colors[i], label = y_data_names[i], width = ind_width)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)
    ax.legend(loc = 'upper right')

# 調(diào)用繪圖函數(shù)
groupedbarplot(x_data = mean_by_reg_co_day.index.values
               , y_data_list = [mean_by_reg_co_day['registered'], mean_by_reg_co_day['casual']]
               , y_data_names = ['Registered', 'Casual']
               , colors = ['#539caf', '#7663b0']
               , x_label = 'Day of week'
               , y_label = 'Check outs'
               , title = 'Check Outs By Registration Status and Day of Week (0 = Sunday)')
  • 偏移前:ind_width/2

  • 偏移后:total_width/2

  • 偏移量:total_width/2-ind_width/2

箱式圖 {#箱式圖}

  • 多級(jí)類(lèi)間數(shù)據(jù)分布比較
  • 柱狀圖 + 堆疊灰度圖
# 只需要指定分類(lèi)的依據(jù),就能自動(dòng)繪制箱式圖
days = np.unique(daily_data['weekday'])
bp_data = []
for day in days:
    bp_data.append(daily_data[daily_data['weekday'] == day]['cnt'].values)

# 定義繪圖函數(shù)
def boxplot(x_data, y_data, base_color, median_color, x_label, y_label, title):
    _, ax = plt.subplots()

    # 設(shè)置樣式
    ax.boxplot(y_data
               # 箱子是否顏色填充
               , patch_artist = True
               # 中位數(shù)線(xiàn)顏色
               , medianprops = {'color': base_color}
               # 箱子顏色設(shè)置乡翅,color:邊框顏色鳞疲,facecolor:填充顏色
               , boxprops = {'color': base_color, 'facecolor': median_color}
               # 貓須顏色whisker
               , whiskerprops = {'color': median_color}
               # 貓須界限顏色whisker cap
               , capprops = {'color': base_color})

    # 箱圖與x_data保持一致
    ax.set_xticklabels(x_data)
    ax.set_ylabel(y_label)
    ax.set_xlabel(x_label)
    ax.set_title(title)

# 調(diào)用繪圖函數(shù)
boxplot(x_data = days
        , y_data = bp_data
        , base_color = 'b'
        , median_color = 'r'
        , x_label = 'Day of week'
        , y_label = 'Check outs'
        , title = 'Total Check Outs By Day of Week (0 = Sunday)')

簡(jiǎn)單總結(jié) {#簡(jiǎn)單總結(jié)}

  • 關(guān)聯(lián)分析、數(shù)值比較:散點(diǎn)圖蠕蚜、曲線(xiàn)圖
  • 分布分析:灰度圖尚洽、密度圖
  • 涉及分類(lèi)的分析:柱狀圖、箱式圖
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末靶累,一起剝皮案震驚了整個(gè)濱河市腺毫,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌挣柬,老刑警劉巖潮酒,帶你破解...
    沈念sama閱讀 218,755評(píng)論 6 507
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異邪蛔,居然都是意外死亡急黎,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,305評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門(mén)侧到,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)勃教,“玉大人,你說(shuō)我怎么就攤上這事匠抗」试矗” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 165,138評(píng)論 0 355
  • 文/不壞的土叔 我叫張陵戈咳,是天一觀的道長(zhǎng)心软。 經(jīng)常有香客問(wèn)我壕吹,道長(zhǎng),這世上最難降的妖魔是什么删铃? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,791評(píng)論 1 295
  • 正文 為了忘掉前任耳贬,我火速辦了婚禮,結(jié)果婚禮上猎唁,老公的妹妹穿的比我還像新娘咒劲。我一直安慰自己,他們只是感情好诫隅,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,794評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布腐魂。 她就那樣靜靜地躺著,像睡著了一般逐纬。 火紅的嫁衣襯著肌膚如雪蛔屹。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 51,631評(píng)論 1 305
  • 那天豁生,我揣著相機(jī)與錄音兔毒,去河邊找鬼。 笑死甸箱,一個(gè)胖子當(dāng)著我的面吹牛育叁,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播芍殖,決...
    沈念sama閱讀 40,362評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼豪嗽,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了豌骏?” 一聲冷哼從身側(cè)響起龟梦,我...
    開(kāi)封第一講書(shū)人閱讀 39,264評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎肯适,沒(méi)想到半個(gè)月后变秦,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,724評(píng)論 1 315
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡框舔,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,900評(píng)論 3 336
  • 正文 我和宋清朗相戀三年蹦玫,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了筋夏。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片谈竿。...
    茶點(diǎn)故事閱讀 40,040評(píng)論 1 350
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖齐饮,靈堂內(nèi)的尸體忽然破棺而出纬凤,到底是詐尸還是另有隱情福贞,我是刑警寧澤,帶...
    沈念sama閱讀 35,742評(píng)論 5 346
  • 正文 年R本政府宣布停士,位于F島的核電站挖帘,受9級(jí)特大地震影響完丽,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜拇舀,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,364評(píng)論 3 330
  • 文/蒙蒙 一逻族、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧骄崩,春花似錦聘鳞、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,944評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至脱惰,卻和暖如春搏嗡,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背枪芒。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,060評(píng)論 1 270
  • 我被黑心中介騙來(lái)泰國(guó)打工彻况, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留谁尸,地道東北人舅踪。 一個(gè)月前我還...
    沈念sama閱讀 48,247評(píng)論 3 371
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像良蛮,于是被迫代替她去往敵國(guó)和親抽碌。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,979評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容