pytorch api:TransformerEncoderLayer-TransformerDecoderLayer-TransformerEncoder-TransformerDecoder...

1. torch.nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu')

TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application.

Parameters:
  • d_model – the number of expected features in the input (required).
  • nhead – the number of heads in the multiheadattention models (required).
  • dim_feedforward – the dimension of the feedforward network model (default=2048).
  • dropout – the dropout value (default=0.1).
  • activation – the activation function of intermediate layer, relu or gelu (default=relu).
Examples:
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
src = torch.rand(10, 32, 512)
out = encoder_layer(src)
print(out.size())

# Results:
torch.Size([10, 32, 512])
forward(src, src_mask=None, src_key_padding_mask=None)

Pass the input through the encoder layer.

Parameters:
  • src – the sequence to the encoder layer (required).
  • src_mask – the mask for the src sequence (optional).
  • src_key_padding_mask – the mask for the src keys per batch (optional).
Shape:

see the docs in Transformer class.


SOURCE CODE

class TransformerEncoderLayer(Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"):
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model)

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super(TransformerEncoderLayer, self).__setstate__(state)

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
        # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor

        src2 = self.self_attn(src, src, src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

2. torch.nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu')

TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. This standard decoder layer is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application.

Parameters:
  • d_model – the number of expected features in the input (required).
  • nhead – the number of heads in the multiheadattention models (required).
  • dim_feedforward – the dimension of the feedforward network model (default=2048).
  • dropout – the dropout value (default=0.1).
  • activation – the activation function of intermediate layer, relu or gelu (default=relu).
Examples:
decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
memory = torch.randn(10, 32, 512)
tgt = torch.randn(20, 32, 512)
out = decoder_layer(tgt, memory)
print(out.size())

# Results:
torch.Size([20, 32, 512])
forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None)

Pass the inputs (and mask) through the decoder layer.

Parameters:
  • tgt – the sequence to the decoder layer (required).
  • memory – the sequence from the last layer of the encoder (required).
  • tgt_mask – the mask for the tgt sequence (optional).
  • memory_mask – the mask for the memory sequence (optional).
  • tgt_key_padding_mask – the mask for the tgt keys per batch (optional).
  • memory_key_padding_mask – the mask for the memory keys per batch (optional).
Shape:

see the docs in Transformer class.


SOURCE CODE
class TransformerDecoderLayer(Module):
    
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"):
        super(TransformerDecoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = Linear(d_model, dim_feedforward)
        self.dropout = Dropout(dropout)
        self.linear2 = Linear(dim_feedforward, d_model)

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
        self.dropout1 = Dropout(dropout)
        self.dropout2 = Dropout(dropout)
        self.dropout3 = Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def __setstate__(self, state):
        if 'activation' not in state:
            state['activation'] = F.relu
        super(TransformerDecoderLayer, self).__setstate__(state)

    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
        tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def _get_clones(module, N):
         return ModuleList([copy.deepcopy(module) for i in range(N)])

    def _get_activation_fn(activation):
        if activation == "relu":
            return F.relu
        elif activation == "gelu":
            return F.gelu

        raise RuntimeError("activation should be relu/gelu, not {}".format(activation))

3. torch.nn.TransformerEncoder(encoder_layer, num_layers, norm=None)

TransformerEncoder is a stack of N encoder layers

Paremeters:
  • encoder_layer – an instance of the TransformerEncoderLayer() class (required).
  • num_layers – the number of sub-encoder-layers in the encoder (required).
  • norm – the layer normalization component (optional).
Examples:
encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
src = torch.randn(10, 32, 512)
out = transformer_encoder(src)
print(out.size())

# Results:
torch.Size([10, 32, 512])
forward(src, mask=None, src_key_padding_mask=None)

Pass the input through the encoder layers in turn.

Parameters:
  • src – the sequence to the encoder (required).
  • mask – the mask for the src sequence (optional).
  • src_key_padding_mask – the mask for the src keys per batch (optional).
Shape:

see the docs in Transformer class.


SOURCE CODE

class TransformerEncoder(Module):
   
    __constants__ = ['norm']

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src, mask=None, src_key_padding_mask=None):
        # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
        output = src

        for mod in self.layers:
            output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)

        if self.norm is not None:
            output = self.norm(output)

        return output

4. torch.nn.TransformerDecoder(decoder_layer, num_layers, norm=None)

TransformerDecoder is a stack of N decoder layers

Parameters:
  • decoder_layer – an instance of the TransformerDecoderLayer() class (required).
  • num_layers – the number of sub-decoder-layers in the decoder (required).
  • norm – the layer normalization component (optional).
Examples:
decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
memory = torch.rand(10, 32, 512)
tgt = torch.rand(20, 32, 512)
out = transformer_decoder(tgt, memory)
print(out.size())

# Results:
torch.Size([20, 32, 512])
forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None)

Pass the inputs (and mask) through the decoder layer in turn.

Parameters:
  • tgt – the sequence to the decoder (required).
  • memory – the sequence from the last layer of the encoder (required).
  • tgt_mask – the mask for the tgt sequence (optional).
  • memory_mask – the mask for the memory sequence (optional).
  • tgt_key_padding_mask – the mask for the tgt keys per batch (optional).
  • memory_key_padding_mask – the mask for the memory keys per batch (optional).
Shape:

see the docs in Transformer class


SOURCE CODE

class TransformerDecoder(Module):
    
    __constants__ = ['norm']

    def __init__(self, decoder_layer, num_layers, norm=None):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, tgt, memory, tgt_mask=None,
                memory_mask=None, tgt_key_padding_mask=None,
                memory_key_padding_mask=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
        
        output = tgt

        for mod in self.layers:
            output = mod(output, memory, tgt_mask=tgt_mask,
                         memory_mask=memory_mask,
                         tgt_key_padding_mask=tgt_key_padding_mask,
                         memory_key_padding_mask=memory_key_padding_mask)

        if self.norm is not None:
            output = self.norm(output)

        return output

5. torch.nn.Transformer(d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation='relu', custom_encoder=None, custom_decoder=None)

A transformer model. User is able to modify the attributes as needed. The architecture is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.

Parameters:
  • d_model – the number of expected features in the encoder/decoder inputs (default=512).
  • nhead – the number of heads in the multiheadattention models (default=8).
  • num_encoder_layers – the number of sub-encoder-layers in the encoder (default=6).
  • num_decoder_layers – the number of sub-decoder-layers in the decoder (default=6).
  • dim_feedforward – the dimension of the feedforward network model (default=2048).
  • dropout – the dropout value (default=0.1).
  • activation – the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu).
  • custom_encoder – custom encoder (default=None).
  • custom_decoder – custom decoder (default=None).
Examples:
transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
src = torch.rand(10, 32, 512)
tgt = torch.rand(20, 32, 512)
out = transformer_model(src, tgt)
print(out.size())

# Results:
torch.Size([20, 32, 512])

Note: A full example to apply nn.Transformer module for the word language model is available in https://github.com/pytorch/examples/tree/master/word_language_model

forward(src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None)

Take in and process masked source/target sequences.

Parameters:
  • src – the sequence to the encoder (required).
  • tgt – the sequence to the decoder (required).
  • src_mask – the additive mask for the src sequence (optional).
  • tgt_mask – the additive mask for the tgt sequence (optional).
  • memory_mask – the additive mask for the encoder output (optional).
  • src_key_padding_mask – the ByteTensor mask for src keys per batch (optional).
  • tgt_key_padding_mask – the ByteTensor mask for tgt keys per batch (optional).
  • memory_key_padding_mask – the ByteTensor mask for memory keys per batch (optional).
Shape:
  • src: (S, N, E).
  • tgt: (T, N, E).
  • src_mask: (S, S).
  • tgt_mask: (T, T).
  • memory_mask: (T, S).
  • src_key_padding_mask: (N, S).
  • tgt_key_padding_mask: (N, T).
  • memory_key_padding_mask: (N, S).

Note: [src/tgt/memory]_mask should be filled with float(‘-inf’) for the masked positions and float(0.0) else. These masks ensure that predictions for position i depend only on the unmasked positions j and are applied identically for each sequence in a batch. [src/tgt/memory]_key_padding_mask should be a ByteTensor where True values are positions that should be masked with float(‘-inf’) and False values will be unchanged. This mask ensures that no information will be taken from position i if it is masked, and has a separate mask for each sequence in a batch.

  • output: (T, N, E).

Note: Due to the multi-head attention architecture in the transformer model, the output sequence length of a transformer is same as the input sequence (i.e. target) length of the decode.

where S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number

Examples:
output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
generate_square_subsequent_mask(sz)

Generate a square mask for the sequence. The masked positions are filled with float(‘-inf’). Unmasked positions are filled with float(0.0).


SOURCE CODE


class Transformer(Module):
    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
                 num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
                 activation="relu", custom_encoder=None, custom_decoder=None):
        super(Transformer, self).__init__()

        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
            encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
            encoder_norm = LayerNorm(d_model)
            self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
            decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
            decoder_norm = LayerNorm(d_model)
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

    def forward(self, src, tgt, src_mask=None, tgt_mask=None,
                memory_mask=None, src_key_padding_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        # type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor  # noqa
        if src.size(1) != tgt.size(1):
            raise RuntimeError("the batch number of src and tgt must be equal")

        if src.size(2) != self.d_model or tgt.size(2) != self.d_model:
            raise RuntimeError("the feature number of src and tgt must be equal to d_model")

        memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
        output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
                              tgt_key_padding_mask=tgt_key_padding_mask,
                              memory_key_padding_mask=memory_key_padding_mask)
        return output

    def generate_square_subsequent_mask(self, sz):
        r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
 Unmasked positions are filled with float(0.0).
 """
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def _reset_parameters(self):
        r"""Initiate parameters in the transformer model."""

        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)

ISSUES

  1. The generate_square_subsequent_mask function in nn.Transformer can only generate square masks, but memory_mask requires the dimension (T, S). I am wondering is there a built in function in transformer?? Thank you!
def _generate_subsequent_mask(tgt_sz, src_sz):
    mask = (torch.triu(torch.ones(src_sz, tgt_sz)) == 1).transpose(0, 1)
    print(mask)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask

_generate_subsequent_mask(4, 5)

# Results:
tensor([[ True, False, False, False, False],
        [ True,  True, False, False, False],
        [ True,  True,  True, False, False],
        [ True,  True,  True,  True, False]])

tensor([[0., -inf, -inf, -inf, -inf],
        [0., 0., -inf, -inf, -inf],
        [0., 0., 0., -inf, -inf],
        [0., 0., 0., 0., -inf]])

Answer 1:You don’t need to use memory_mask unless you want to prevent the decoder from attending some tokens in the input sequence, and the original Transformer didn’t use it in the first place because the decoder should be aware of the entire input sequence for any token in the output sequence. The same thing can be said to the input sequence (i.e., src_mask.)

In the PyTorch language, the original Transformer settings are src_mask=None and memory_mask=None, and for tgt_mask=generate_square_subsequent_mask(T).

Again, memory_mask is used only when you don’t want to let the decoder attend certain tokens in the input sequence. That is why the input shape is (T, S) (where T is output sequence length and S is input sequence length.)

  1. How to add padding mask to nn.TransformerEncoder module? More
def _generate_key_padding_mask(include_length): # return (N,L)
    max_length = torch.max(include_length)
    mask = torch.stack([torch.arange(max_length)>=i for i in include_length])
    return mask
    
include_length = torch.tensor([6, 4, 3, 2])
_generate_key_padding_mask(include_length)

# Results:
tensor([[False, False, False, False, False, False],
        [False, False, False, False,  True,  True],
        [False, False, False,  True,  True,  True],
        [False, False,  True,  True,  True,  True]])
  1. How to turn a list of tensor to tensor?
def _generate_key_padding_mask(include_length): # return (N,L)
    max_length = torch.max(include_length)
    print([torch.arange(max_length)>=i for i in include_length])
    mask = torch.stack([torch.arange(max_length)>=i for i in include_length])
    return mask
    
include_length = torch.tensor([6, 4, 3, 2])
_generate_key_padding_mask(include_length)

# Results:
[tensor([False, False, False, False, False, False]), tensor([False, False, False, False,  True,  True]), tensor([False, False, False,  True,  True,  True]), tensor([False, False,  True,  True,  True,  True])]

tensor([[False, False, False, False, False, False],
        [False, False, False, False,  True,  True],
        [False, False, False,  True,  True,  True],
        [False, False,  True,  True,  True,  True]])
x = torch.tensor([[1, 2]])
print(torch.cat((x, x, x), 0))
print(torch.cat((x, x, x), 1))

# Results:
tensor([[1, 2],
        [1, 2],
        [1, 2]])
tensor([[1, 2, 1, 2, 1, 2]])

參考鏈接:
https://pytorch.org/docs/master/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末茄螃,一起剝皮案震驚了整個(gè)濱河市妄帘,隨后出現(xiàn)的幾起案子芥吟,更是在濱河造成了極大的恐慌巩检,老刑警劉巖贡避,帶你破解...
    沈念sama閱讀 217,185評論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件庵寞,死亡現(xiàn)場離奇詭異北苟,居然都是意外死亡奏夫,警方通過查閱死者的電腦和手機(jī)怕篷,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,652評論 3 393
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來酗昼,“玉大人廊谓,你說我怎么就攤上這事÷橄鳎” “怎么了蒸痹?”我有些...
    開封第一講書人閱讀 163,524評論 0 353
  • 文/不壞的土叔 我叫張陵,是天一觀的道長呛哟。 經(jīng)常有香客問我叠荠,道長,這世上最難降的妖魔是什么扫责? 我笑而不...
    開封第一講書人閱讀 58,339評論 1 293
  • 正文 為了忘掉前任榛鼎,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘者娱。我一直安慰自己抡笼,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,387評論 6 391
  • 文/花漫 我一把揭開白布黄鳍。 她就那樣靜靜地躺著推姻,像睡著了一般。 火紅的嫁衣襯著肌膚如雪际起。 梳的紋絲不亂的頭發(fā)上拾碌,一...
    開封第一講書人閱讀 51,287評論 1 301
  • 那天,我揣著相機(jī)與錄音街望,去河邊找鬼校翔。 笑死,一個(gè)胖子當(dāng)著我的面吹牛灾前,可吹牛的內(nèi)容都是我干的防症。 我是一名探鬼主播,決...
    沈念sama閱讀 40,130評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼哎甲,長吁一口氣:“原來是場噩夢啊……” “哼蔫敲!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起炭玫,我...
    開封第一講書人閱讀 38,985評論 0 275
  • 序言:老撾萬榮一對情侶失蹤奈嘿,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后吞加,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體裙犹,經(jīng)...
    沈念sama閱讀 45,420評論 1 313
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,617評論 3 334
  • 正文 我和宋清朗相戀三年衔憨,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了叶圃。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,779評論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡践图,死狀恐怖掺冠,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情码党,我是刑警寧澤德崭,帶...
    沈念sama閱讀 35,477評論 5 345
  • 正文 年R本政府宣布,位于F島的核電站揖盘,受9級特大地震影響眉厨,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜扣讼,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,088評論 3 328
  • 文/蒙蒙 一缺猛、第九天 我趴在偏房一處隱蔽的房頂上張望缨叫。 院中可真熱鬧椭符,春花似錦荔燎、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,716評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至蒸健,卻和暖如春座享,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背似忧。 一陣腳步聲響...
    開封第一講書人閱讀 32,857評論 1 269
  • 我被黑心中介騙來泰國打工渣叛, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人盯捌。 一個(gè)月前我還...
    沈念sama閱讀 47,876評論 2 370
  • 正文 我出身青樓淳衙,卻偏偏與公主長得像,于是被迫代替她去往敵國和親饺著。 傳聞我的和親對象是個(gè)殘疾皇子箫攀,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,700評論 2 354

推薦閱讀更多精彩內(nèi)容