Notes
Section 2, Program Structure
nested block in if-else if-else block
if x, y := 100, 200; x > 1000 {
} else if x := "hello"; y > 0 { //this x shadow the 'x' in if
fmt.Println(x, y)
}
scope shaw issue
var cwd string
func init() {
cwd, err := os.Getwd() //compile error: the 'cwd' declared but not used
if err != nil {
log.Fatalf("os.Getwd failed: %v", err)
}
}
'cwd', 'err' are not declared in their block, so the compiler will declare them and will shadow the global 'cwd' variable.
Section 3, Basic Data Type
Go types
- basic types: numbers, strings, booleans
- aggregate types: arrays and structs
- reference types: slices, maps, functions, channels. (Each includes pointers that point to internal data)
- interface types
Types synonym
- int/uint types' size are platform and compiler dependent. Never make assumption for the size!
- 'rune' is synonym to 'int32', while 'byte' to 'uint8'
- 'uintptr' is for the low level programming, like Go with C
Operators
- the '%' for negative:
fmt.Println(-5 % -2) //-1
fmt.Println(5 % -2) //1
fmt.Println(-5 % 2) //-1
- the result is the same type as the operators, so overflow may happen
var u uint8 = 255
fmt.Println(u, u+1, u*u) // "255 0 1"
var i int8 = 127
fmt.Println(i, i+1, i*i) // "127 -128 1"
-
'unary operators': '+', '-', '^'
** For integers, '+x' is short for '0 + x' while '-x' is short for '0 - x'
** For floating and complex numbers, '+x' is just for 'x' while '-x' is the negative of 'x'
** '^x' return the value with each bit inverted 'NaN' is from like '0/0' or 'sqrt(-1)'. Any comparation of 'NaN' always yield false
nan := math.NaN()
fmt.Println(nan == nan, nan < nan, nan > nan) // "false false false"
- Row string literal: no escape happens and can cross multiple lines
Conversion and format
Printf
o := 0666
fmt.Printf("%d %[1]o %#[1]o\n", o) // "438 666 0666"
x := int64(0xdeadbeef)
fmt.Printf("%d %[1]x %#[1]x %#[1]X\n", x)
// Output:
// 3735928559 deadbeef 0xdeadbeef 0XDEADBEEF
The '[1]' means use the first argument, so no need to provide the same argument again and again
The '#' is used to add the '0', '0x', '0X'
If space is after the '%', like '% x', then it will insert the space for each hex digits, like 'e3 83 97 e3 83 ad e3 82 b0 e3 83 a9 e3 83 a0'
The 'strconv' package includes many format functions
The '%t' show true or false, '%T' show the type
Unicode
Unicode version 8 use 4 bytes for each charactor, also knows as UTF-32/UCS-4. In Go, the 'rune' is used for this.
-
Unicode wasts lots of space, so the 'UTF-8' is invented.
00xxxxxx runes0?127 (ASCII) 111xxxxx 10xxxxxx 128?2047 (values <128 unused) 1110xxxx 10xxxxxx 10xxxxxx 2048?65535 (values <2048 unused) 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 65536?0x10ffff (other values unused)
-
Code point
Same values:
"世界" "\xe4\xb8\x96\xe7\x95\x8c" //the binary using the UTF-8 coding "\u4e16\u754c" //the binary using the Unicode, will be encoded as UTF-8 by the compiler "\U00004e16\U0000754c" //the binary using the Unicode, will be encoded as UTF-8 by the compiler
They are all valid UTF-8 encoding of code point, but in Go, when for 'rune', value below 256 can used as '\x', while above 256, must use '\u' or '\U'.
enumeratio
const (
_ = 1 << (10 * iota)
KiB // 1024
MiB // 1048576
GiB // 1073741824
TiB // 1099511627776 (exceeds 1 << 32)
PiB // 1125899906842624
EiB // 1152921504606846976
ZiB // 1180591620717411303424
YiB // 1208925819614629174706176
)
The 'iota' is 'int' type, so it will overflow.
Section 4, Composite Types
About array type
The size is part of the type, so '[3]int' is different type from '[5]int'
-
Can init with specific indices
symbol := [...]string{0: "$", 2: "9", 5: "!", 9: """} r := [...]int{99: -1}
All the ones not in the indices will be init as the zero value.
Arrays are comparable, 'equal' when the two arrays have the same type and all the elements are the same
About the slice type
Index beyonds the capcity will cause panic, while beyonds length will expend the slice
's[i:j]' will share the same underlying array with slice 's'
Slices are not comparable. For '[]byte], using the 'bytes.Equal' to compare
-
Nil slice has zero length and zero capcity, while the reverse is not right.
var s []int // len(s) == 0, s == nil s = nil // len(s) == 0, s == nil s = []int(nil) // len(s) == 0, s == nil s = []int{} // len(s) == 0, s != nil
Nil slice and non-nil slice with zero length should be treated in the same way, so using 'len(s) == 0' to check if a slice is empty
Under the hood, 'make' creates an unnamed array variable and returns a slice of it
With append, slice may enlarge its space to hold new elements. The copy will handle the overlap of the underlying array.
About the map type
-
Lookup using a key not existing will return the zero value of the value type.
a := make(map[string]int) a["bob"] = a["bob"] + 1 fmt.Println(a["bob"]) //will output 1
-
You can use the '++' to increase the value
a := make(map[string]int) a["bob"]++ fmt.Println(a["bob"]) //will output 1
-
A map element is not variable, you can never try to get its address. But on the different, you can get the address of a slice element
_ = &a["bob"] //compile error
-
Zero value of the map is nil.
var ages map[string]int fmt.Println(ages == nil) // "true" fmt.Println(len(ages) == 0) // "true"
-
A nil map supprts operations: lookup, delete, len, range, but not store value.
var aa map[string]int aa["bob"] = 100 //panic, the map must be created before storing any value
The maps are not comparable except for comparision with nil.
About the struct type
-
Will compile error
func create(id int) Employee { //... } create(100).Name = "bob" //compile error, change the return type to *Employee will be ok
-
Fields not exported in a struct cannot be inited in another package
package p type T struct{ a, b int } // a and b are not exported
package q import "p" var _ = p.T{a: 1, b: 2} // compile error: can't reference a, b var _ = p.T{1, 2} // compile error: can't reference a, b
And this is also wrong:
package p type T struct{ A, b, C int } // a and b are not exported
package q import "p" var _ = p.T{1, 2} // compile error: can't reference A, b var _ = p.T{A: 1, C: 2} // ok
-
Embedding will form an anoymous field of the struct with the implicit field name of the embedded type.
type Point struct { X, Y int } type Circle struct { Point // form a anoymous field with implicit field name "Point" Radius int } type Wheel struct { Circle // form a anoymous field with implicit field name "Circle" Spokes int }
So you cannot embed the same type for more than twice, as their implicit names will conflict.
-
The implicit name can be optional for dot expression
w := new(Wheel) w.Circle.Radius = 100 w.Radius = 100 // Both of the two are valid
-
The embedded struct cannot init by normal struct literal
w = Wheel{8, 8, 5, 20} // compile error: unknown fields w = Wheel{X: 8, Y: 8, Radius: 5, Spokes: 20} // compile error: unknown fields
You must init like this:
w = Wheel{Circle{Point{8, 8}, 5}, 20} w = Wheel{ Circle: Circle{ Point: Point{X: 8, Y: 8}, Radius: 5, }, Spokes: 20, // NOTE: trailing comma necessary here (and at Radius) } fmt.Printf("%#v\n", w) // Output: // Wheel{Circle:Circle{Point:Point{X:8, Y:8}, Radius:5}, Spokes:20} w.X = 42 fmt.Printf("%#v\n", w) // Output: // Wheel{Circle:Circle{Point:Point{X:42, Y:8}, Radius:5}, Spokes:20}
About the JSON
-
field tag is a string of metadata associated at compile time with the field of a struct. It's a 'key:"value"' pair.
Year int `json:"released"` Color bool `json:"color,omitempty"`
The JSON field tag format:
json:"<json name>,[addition option]"
When Marshal, the not exported fields will be ignored; When Unmarshal, the fields of JSON that are not in the data struct will be ignored
Associating JSON names with Go struct names during Unmarshaling is case-insensitive, so no need to add the JSON field tag for simple field name. But for the Marshal, you must define the JSON field tag, or the capital name will be used.
Section 4, Functions
Function definition
If return only one unamed type, the '()' can be omitted in the return result definition.
Parameters and named results share the same level of the function outermost block.
Go function stack
- Go has a variable size function stack, so the recursive is always safe.
About the defer
The 'defer' forms a stack and wil be called by stack before the function return.
Even panic in the function, the 'defer' will be called too.
Section 6, Methods
About the receiver
-
The compiler will perform implicit '&p' on the variable when the receiver is the pointer.
type Point struct { x int y int } func (p *Point) Offset(off int) { p.x += off p.y += off } //... p := Point{} p.Offset(10) // This is valid, as the compiler will perform implicit '&p' on this. Point{1, 2}.Offset(100) // compile error, as it's not the variable and cannot be addressed.
-
It's true on these three scenarios:
- The type of the variable is the same as the receiver parameter
- The type of the variable is T, while the receiver parameter is *T (The compiler will implicitly perform '&p')
- The type of the variable is T, while the receiver parameter is T (The compiler will implicitly perform 'p')
-
Bind the method with the receiver and assign to a variable, then you can call the method without the receiver via the variable. This is called method value
p := Point{1, 2} q := Point{4, 6} distanceFromP := p.Distance fmt.Println(distanceFromP(q))
-
Assigning the method to variable directly is called method expression, you can then call it by providing the receiver as the first parameter.
p := Point{1, 2} q := Point{4, 6} distance := Point.Distance // method expression fmt.Println(distance(p, q)) // "5"
About the embedding
- Embedding a type will inherit all its methods. In terms of implementation, the compiler will generate the wrapped methods with the type.
About the encapsulation
- All fields in the struct is visible to any function or any method in the same package
Section 7, Interfaces
About the interface satisfaction
- Though you can use the type T to access
*T
method (the compiler will perform it implicitly), but you cannot use type T to satisfy the*T
type interface.
interface values
-
An interface value is composed of: dynamic type and dynamic value. The type is the dynamic type of the value.
var w io.Writer // both the type and value are nil if w == nil { // this is true fmt.Println('is nil') } var buf *bytes.Buffer // buf is a nil pointer w = nil // both the type and value are nil w = buf // the type is '*bytes.Buffer' (not nil), while the value is nil if w == nil { // this is false, as the type of w is not nil, so the w is not nil fmt.Println('is nil') }
-
interface value comparation may cause panic
var x interface{} = []int{1, 2, 3} fmt.Println(x == x) // panic: comparing uncomparable type []int
When comparation, both the type and value must be comparable. Similar risk eixsts when using the interfaces as the map keys.
-
To report the dynamic type of an interface value, using the '%T'
var w io.Writer fmt.Printf("%T\n", w) // "<nil>" w = os.Stdout fmt.Printf("%T\n", w) // "*os.File" w = new(bytes.Buffer) fmt.Printf("%T\n", w) // "*bytes.Buffer"
Type assertion
x.(T), if T is a concrete type, it will check if x's dynamic type is identical to T, if so the results is the dynamic value, or it will panic. If the T is a interface type, it will first check if x's dynamic type satisfies T, if so, a new interface value will be returned with the new dynamic type T and the same dynamic value.
No matter what type was asserted, if the operand is a nil interface value, the type assertion fails
Type switch
-
take one example, you can assign the x.(type) to a new variable
func sqlQuote(x interface{}) string { switch x := x.(type) { case nil: return "NULL" case int, uint: return fmt.Sprintf("%d", x) // x has type interface{} here. case bool: if x { return "TRUE" } return "FALSE" case string: return sqlQuoteString(x) // (not shown) default: panic(fmt.Sprintf("unexpected type %T: %v",wxw,wx.i)t)-ebooks.info } }
Section 8, Goroutines and Channels
Channels
The channel is a reference.
channels are comparable, it's true when both are references to the same channel data structure.
A channel can be closed, send to a closed channel will cause panic, while receive on a closed channel, it will yield zero value of the channel element type after the channel is empty.
-
To test on a closed channel, use like
x, ok := <- c
, to be comvinent, you can use the 'range' to loop the channel until it's drain and closed.for x := range naturals { // the loop will exit when the channel 'naturals' is drained and closed. squares <- x * x }
It's not necessary to close the channel when you finish with it. Only close it when you want to tell the receive that you will sent anymore data. It's different from the file, you must always close a file after finishing with it.
Unidirectional channels: the
chan<- int
is send-only channel, the<-chan int
is the receive-only channel. And theclose
must not be applied on the receive-only channel. It will implicitly convertchan int
tochan<- int
and<-chan int
.To get the capcity of the channel, using the
cap(c)
, while thelen(c)
returns the currently number of the buffered elements.-
An typical example for loop paralle
func makeThumbnails6(filenames <-chan string) int64 { sizes := make(chan int64) var wg sync.WaitGroup // number of working goroutines for f := range filenames { wg.Add(1) // worker go func(f string) { defer wg.Done() thumb, err := thumbnail.ImageFile(f) if err != nil { log.Println(err) return } info, _ := os.Stat(thumb) // OK to ignore error sizes <- info.Size() }(f) } // closer go func() { wg.Wait() close(sizes) }() var total int64 for size := range sizes { total += size } return total }
-
Using a buffered channel as a semaphore
var sema = make(chan struct{}, 10) func dowork() { sema <- struct{}{} // acquire the sema defer func() { <-sema }() // release the sema // do something here //... }
-
Using select with a closeable channel to cancel the goroutines. Closing the channel is like broadcasting the goroutines to let them exit gracefully.
func main() { done := make(chan struct{}) jc := make(chan string) go func() { select { case <-done: return case job := <-jc: //do something with the job } }() jc<- "hello" close(done) }
Section 9, Concurrency with Shared Variables
Mutex
defer will be be executed even the func panic
The mutex is not re-entrant, which means that it can not be locked recursively.
-
Different goroutines may run on different CPU, different statements may be reordered by the modern compiler and CPU when they are not dependent on each other.
var x, y int go func() { x = 1 // A1 fmt.Print("y:", y, " ") // A2 }() go func() { y = 1 // B1 fmt.Print("x:", x, " ") // B2 }()
The result may be "x = 0, y = 0", as the CPU or compiler may reorder the statements; the different goroutines may run on different CPU, and the update may happen on each CPU cache and doesn't sync with main memory on time. The mutex will make sure the right order.
-
Duplicate suppression
type entry struct { res result ready chan struct{} // closed when res is ready } func New(f Func) *Memo { return &Memo{f: f, cache: make(map[string]*entry)} } type Memo struct { f Func mu sync.Mutex // guards cache cache map[string]*entry } func (memo *Memo) Get(key string) (value interface{}, err error) { memo.mu.Lock() e := memo.cache[key] if e == nil { // This is the first request for this key. // This goroutine becomes responsible for computing // the value and broadcasting the ready condition. e = &entry{ready: make(chan struct{})} memo.cache[key] = e memo.mu.Unlock() e.res.value, e.res.err = memo.f(key) close(e.ready) // broadcast ready condition } else { // This is a repeat request for this key. memo.mu.Unlock() <-e.ready // wait for ready condition } return e.res.value, e.res.err }
Goroutines vs OS threads
Goroutine has dynamic size of stack, which is up to 1GB while the OS thread is typical 2MB.
Goroutines schedule implicitly by certain Go language constructs, like time.Sleep, channel block, mutex block, etc, no need to switch kernel context. While the OS threads schedule is invoked every few ms, need to switch kernel context.
GOMAXPROCS is the default the number of the CPU on the machine.
Section 10, Packages and The Go Tool
Go build
Using flag '-u' in 'go get' will update the current repo to the latest version.
The 'go build -i' will install the dependent packages and will decrease the compile time next time.
-
Cross compile
$ GOARCH=386 go build -i gopl.io/ch10/cross // it will install in $GOPATH/pkg/386
Files like
net_linux.go
orasm_amd64.s
, the compiler will compile it based on the env.Comment before the file package declaration can also control the compiling.
// +build linux darwin
means only compile it for linux and darwin,// +build ignore
means never compile this file.
Go doc
-
The first sentence is usually a summary that starts with the declared name.
// Fprintf formats according to a format specifier and writes to w. // It returns the number of bytes written and any write error encountered. func Fprintf(w io.Writer, format string, a ...interface{}) (int, error)
-
Check the doc
$ go doc json.encode func (dec *Decoder) Decode(v interface{}) error Decode reads the next JSON-encoded value from its input and stores it in the value pointed to by v.
-
Export the doc to html and serve it
$ godoc -http :8000
And then, access the doc via http://localhost:8000/pkg
Internal packages
package under the 'internal' directory is the internal package
-
Can be seen by the packages under the parent of the 'internal' directory
net/http net/http/internal/chunked net/http/httputil net/url
The 'net/http/internal/chunked' can be seen by 'net/http', 'net/http/httputil', while not seen by 'net/url'
Go list
list the packages
-
List all the packages under the workspace.
$ go list ...
-
List all under path
$ go list gopl.io/ch3/...
-
List by matched pattern
$ go list ...xml... encoding/xml gopl.io/ch7/xmlselect
-
go list -json
to show by json format of the package detail info.$ go list -json hash { "Dir": "/home/gopher/go/src/hash", "ImportPath": "hash", "Name": "hash", "Doc": "Package hash provides interfaces for hash functions.", "Target": "/home/gopher/go/pkg/darwin_amd64/hash.a", "Goroot": true, "Standard": true, "Root": "/home/gopher/go", "GoFiles": [ "hash.go" ], "Imports": [ "io" ], "Deps": [ "errors", "io", "runtime", "sync", "sync/atomic", "unsafe" ] }
-
'-f ' to customize the output format
$ go list -f '{{join .Deps " "}}' strconv errors math runtime unicode/utf8 unsafe
It lists all the dependencies. Actually, the '-f' is like using the text template to format the output.
Section 11, Testing
- Within
*_test.go
files, three kinds of functions are treated specially : tests, benchmarks, and examples. Function starts with 'Test' is for tests, 'Benchmark' is for benchmarks, 'Example' is for examples.
Tests
-
'-run' to run specific cases using the regular expression
$ go test -v -run="French|Canal" === RUN TestFrenchPalindrome --- FAIL: TestFrenchPalindrome (0.00s) word_test.go:28: IsPalindrome("été") = false === RUN TestCanalPalindrome --- FAIL: TestCanalPalindrome (0.00s) word_test.go:35: IsPalindrome("A man, a plan, a canal: Panama") = false FAIL exit status 1 FAIL gopl.io/ch11/word1 0.014s
External Test Package
-
Sometimes, in case of a cycle of dependencies in test files, use the
_test
to declare a external test package. For example, in 'net/url', the test file may declare package likepackage url_test
, the compiler will create an external package for this implicitly.$ go list -f={{.GoFiles}} fmt [doc.go format.go print.go scan.go] $ go list -f={{.TestGoFiles}} fmt [export_test.go] $ go list -f={{.XTestGoFiles}} fmt [fmt_test.go scan_test.go stringer_test.go]
The 'XTestGoFiles' is the external test package files.
-
In external package test file, you cannot access the private variable or functions in the tested package. In order to do while-box testing in external package test files, using a export file to export the private things. And this file is always called
export_test.go
For example, the
export_test.go
file for the 'fmt' package is:package fmt var IsSpace = isSpace
Benchmark Testing
-
Test and check the memory
$ go test -bench=. -benchmem PASS BenchmarkIsPalindrome 2000000 807 ns/op 128 B/op 1 allocs/op
Profiling
-
Profiling when testing
$ go test -cpuprofile=cpu.out $ go test -blockprofile=block.out $ go test -memprofile=mem.out
And then run the pprof tool
$ go test -run=NONE -bench=ClientServerParallelTLS64 \ -cpuprofile=cpu.log net/http PASS BenchmarkClientServerParallelTLS64-8 1000 3141325 ns/op 143010 B/op 1747 allocs/op ok net/http 3.395s $ go tool pprof -text -nodecount=10 ./http.test cpu.log 2570ms of 3590ms total (71.59%) Dropped 129 nodes (cum <= 17.95ms) Showing top 10 nodes out of 166 (cum >= 60ms) flat flat% sum% cum cum% 1730ms 48.19% 48.19% 1750ms 48.75% crypto/elliptic.p256ReduceDegree 230ms 6.41% 54.60% 250ms 6.96% crypto/elliptic.p256Diff 120ms 3.34% 57.94% 120ms 3.34% math/big.addMulVVW 110ms 3.06% 61.00% 110ms 3.06% syscall.Syscall 90ms 2.51% 63.51% 1130ms 31.48% crypto/elliptic.p256Square 70ms 1.95% 65.46% 120ms 3.34% runtime.scanobject 60ms 1.67% 67.13% 830ms 23.12% crypto/elliptic.p256Mul 60ms 1.67% 68.80% 190ms 5.29% math/big.nat.montgomery 50ms 1.39% 70.19% 50ms 1.39% crypto/elliptic.p256ReduceCarry 50ms 1.39% 71.59% 60ms 1.67% crypto/elliptic.p256Sum
The
-nodecount=10
means showing only 10 rows
Example Testing
- For example test
ExampleFuncName
, thego doc
will add this example to the functionFuncName
automatically.
Section 12, Reflection
reflect, type and value
-
reflect.TypeOf
return the dynamic type of the interface value. The '%T' infmt
is using this.var w io.Writer = os.Stdout fmt.Println(reflect.TypeOf(w)) // "*os.File"
-
reflect.ValueOf
to get the valuev := reflect.ValueOf(3) // a reflect.Value fmt.Println(v) // "3" fmt.Printf("%v\n", v) // "3" fmt.Println(v.String()) // NOTE: "<int Value>" t := v.Type() // a reflect.Type fmt.Println(t.String()) // "int" v := reflect.ValueOf(3) // a reflect.Value x := v.Interface() // an interface{} i := x.(int) // an int fmt.Printf("%d\n", i) // "3"
-
reflect.Value.Kind
usage. Kind of zero value isreflect.Invalid
func formatAtom(v reflect.Value) string { switch v.Kind() { case reflect.Invalid: return "invalid" case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return strconv.FormatInt(v.Int(), 10) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return strconv.FormatUint(v.Uint(), 10) // ...floating-point and complex cases omitted for brevity... case reflect.Bool: return strconv.FormatBool(v.Bool()) case reflect.String: return strconv.Quote(v.String()) case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Slice, reflect.Map: return v.Type().String() + " 0x" + strconv.FormatUint(uint64(v.Pointer()), 16) default: // reflect.Array, reflect.Struct, reflect.Interface return v.Type().String() + " value" } }
-
reflect for the Composite Types
func display(path string, v reflect.Value) { switch v.Kind() { case reflect.Invalid: fmt.Printf("%s = invalid\n", path) case reflect.Slice, reflect.Array: for i := 0; i < v.Len(); i++ { display(fmt.Sprintf("%s[%d]", path, i), v.Index(i)) } case reflect.Struct: for i := 0; i < v.NumField(); i++ { fieldPath := fmt.Sprintf("%s.%s", path, v.Type().Field(i).Name) display(fieldPath, v.Field(i)) } case reflect.Map: for _, key := range v.MapKeys() { display(fmt.Sprintf("%s[%s]", path, formatAtom(key)), v.MapIndex(key)) } case reflect.Ptr: if v.IsNil() { fmt.Printf("%s = nil\n", path) } else { display(fmt.Sprintf("(*%s)", path), v.Elem()) } case reflect.Interface: if v.IsNil() { fmt.Printf("%s = nil\n", path) } else { fmt.Printf("%s.type = %s\n", path, v.Elem().Type()) display(path+".value", v.Elem()) } default: // basic types, channels, funcs fmt.Printf("%s = %s\n", path, formatAtom(v)) } }
-
Set value
x := 1 rx := reflect.ValueOf(&x).Elem() rx.SetInt(2) // OK, x = 2 rx.Set(reflect.ValueOf(3)) // OK, x = 3 rx.SetString("hello") // panic: string is not assignable to int rx.Set(reflect.ValueOf("hello")) // panic: string is not assignable to int var y interface{} ry := reflect.ValueOf(&y).Elem() ry.SetInt(2) // panic: SetInt called on interface Value ry.Set(reflect.ValueOf(3)) // OK, y = int(3) ry.SetString("hello") // panic: SetString called on interface Value ry.Set(reflect.ValueOf("hello")) // OK, y = "hello"
-
We can use reflect to access the unexport fields of a struct, but you cannot update it, because the reflect will records whether it's exported or not.
stdout := reflect.ValueOf(os.Stdout).Elem() // *os.Stdout, an os.File var fmt.Println(stdout.Type()) // "os.File" fd := stdout.FieldByName("fd") fmt.Println(fd.Int()) // "1" fd.SetInt(2) // panic: unexported field fmt.Println(fd.CanAddr(), fd.CanSet()) // "true false"
-
access the struct tags
// Build map of fields keyed by effective name. fields := make(map[string]reflect.Value) v := reflect.ValueOf(ptr).Elem() // the struct variable for i := 0; i < v.NumField(); i++ { fieldInfo := v.Type().Field(i) // a reflect.StructField tag := fieldInfo.Tag // a reflect.StructTag name := tag.Get("http") if name == "" { name = strings.ToLower(fieldInfo.Name) } fields[name] = v.Field(i) }
-
access the methods. Using
reflect.Value.Call
is possible to call the method// Print prints the method set of the value x. func Print(x interface{}) { v := reflect.ValueOf(x) t := v.Type() fmt.Printf("type %s\n", t) for i := 0; i < v.NumMethod(); i++ { methType := v.Method(i).Type() fmt.Printf("func (%s) %s%s\n", t, t.Method(i).Name, strings.TrimPrefix(methType.String(), "func")) } }
Reflect is fragile and will cause terrible performance issue is it's in the critical code path.