Deep Learning-complex structure

Last month, Andrew Ng came to give two lectures, one for public and the other for specific. He talked about directions of recent research on dealing with data. No doubt the hero is deep learning, the new AI method. When he did research in Google and also now in Baidu for BaiduEye, the main tool is deep learning, though they use a much more complex structure as well as hundreds of computers.

If you have heard about neural network, then deep learning could be seen as a combination of neural networks. Most machine learning tools can be approximated by neural networks with one or two hidden layers. Then you can imagine how powerful a deep learning structure can be as a combination of neural networks.

When using neural networks to train data, usually we will first decide how many layers and how many neurons first, and then use this model with coefficient parameters to train given data. And those parameters after training are related to the data. It has been proved to be competent in classification problems.?

However, deep learning is a more complex structure. First it will divide the whole procedure into several main steps, like preprocessing and feature transformations. Then it will treat each main step as a cycle or as a whole and build networks to complete this separate cycle. And the last step is to connect those cycles one by one.

This complex structure is very useful when we want to accomplish similar targets, for example identify human race and identify human age. The first step for these two might be identify human first. Then if we treat identify human as a cycle, then we can share the cycle with other researches.

Also the hidden layers may not be hidden any more. They can also be treated as features for retrieval. For example, when we want to identify a specific person from moving videos, we can recover canonical-view face images from connected pictures and then use this result to identify. The recovering step is a hidden layer in this research but it might play an independent role in other topics and is useful.

Usually, we can also use partial results to train other data. For example, some researchers study medical ultrasound images on pregnancy but because the number of pregnant mom is relatively small than the model. Then how can they do such a research? One researcher used ImageNet database to train his models and then use the model to train real data. Guess what? He got a good result. So if you meet similar questions like less samples, maybe you can try this method.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末隘马,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子理澎,更是在濱河造成了極大的恐慌缎讼,老刑警劉巖递惋,帶你破解...
    沈念sama閱讀 207,248評論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件鲫售,死亡現(xiàn)場離奇詭異泡徙,居然都是意外死亡椿疗,警方通過查閱死者的電腦和手機(jī)漏峰,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,681評論 2 381
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來届榄,“玉大人浅乔,你說我怎么就攤上這事。” “怎么了靖苇?”我有些...
    開封第一講書人閱讀 153,443評論 0 344
  • 文/不壞的土叔 我叫張陵席噩,是天一觀的道長。 經(jīng)常有香客問我贤壁,道長悼枢,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 55,475評論 1 279
  • 正文 為了忘掉前任脾拆,我火速辦了婚禮馒索,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘名船。我一直安慰自己绰上,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,458評論 5 374
  • 文/花漫 我一把揭開白布渠驼。 她就那樣靜靜地躺著蜈块,像睡著了一般。 火紅的嫁衣襯著肌膚如雪迷扇。 梳的紋絲不亂的頭發(fā)上百揭,一...
    開封第一講書人閱讀 49,185評論 1 284
  • 那天,我揣著相機(jī)與錄音谋梭,去河邊找鬼。 笑死倦青,一個胖子當(dāng)著我的面吹牛瓮床,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播产镐,決...
    沈念sama閱讀 38,451評論 3 401
  • 文/蒼蘭香墨 我猛地睜開眼隘庄,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了癣亚?” 一聲冷哼從身側(cè)響起丑掺,我...
    開封第一講書人閱讀 37,112評論 0 261
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎述雾,沒想到半個月后街州,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,609評論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡玻孟,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,083評論 2 325
  • 正文 我和宋清朗相戀三年唆缴,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片黍翎。...
    茶點(diǎn)故事閱讀 38,163評論 1 334
  • 序言:一個原本活蹦亂跳的男人離奇死亡面徽,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情趟紊,我是刑警寧澤氮双,帶...
    沈念sama閱讀 33,803評論 4 323
  • 正文 年R本政府宣布,位于F島的核電站霎匈,受9級特大地震影響戴差,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜唧躲,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,357評論 3 307
  • 文/蒙蒙 一造挽、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧弄痹,春花似錦饭入、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,357評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至蚓让,卻和暖如春乾忱,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背历极。 一陣腳步聲響...
    開封第一講書人閱讀 31,590評論 1 261
  • 我被黑心中介騙來泰國打工窄瘟, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人趟卸。 一個月前我還...
    沈念sama閱讀 45,636評論 2 355
  • 正文 我出身青樓蹄葱,卻偏偏與公主長得像,于是被迫代替她去往敵國和親锄列。 傳聞我的和親對象是個殘疾皇子图云,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,925評論 2 344

推薦閱讀更多精彩內(nèi)容

  • 還記得春天里你的樣子,粉白的花瓣邻邮,鵝黃的花蕊竣况,滿枝椏的綻放你的美!哦筒严,葉子長出來了丹泉,細(xì)小嫩綠間你們交相輝映,我...
    淡抹微云閱讀 221評論 0 1
  • 沒畫完的畫 沒讀完的書 沒寫完的文字 看不夠的大海 吹不盡的秋風(fēng) 風(fēng)里的島城 城里熟悉的人和故事 十月見:) 明天...
    澹臺嵋因閱讀 964評論 3 11