題目
Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If there isn't one, return 0 instead.
Note:
The sum of the entire nums array is guaranteed to fit within the 32-bit signed integer range.
Example 1:
Given nums = [1, -1, 5, -2, 3], k = 3,
return 4. (because the subarray [1, -1, 5, -2] sums to 3 and is the longest)
Example 2:
Given nums = [-2, -1, 2, 1], k = 1,
return 2. (because the subarray [-1, 2] sums to 1 and is the longest)
Follow Up:
Can you do it in O(n) time?
答案
Idea
First pass
Calculate sum up to nums[i], store in a map which uses sum as key, i as value.
Second pass
for each nums[i], look up if there is an index j such that nums[i] + .... + nums[j] = k
which means sum up to index j(inclusive) - sum up to index i(exclusive) = k
if the map contains x = k + sum up to index i (exclusive), we know subarray from index i to index map.get(x) is the maximum size subarray that sums to k
public int maxSubArrayLen(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();
int sum = 0;
// First pass
for(int i = 0; i < nums.length; i++) {
sum += nums[i];
map.put(sum, i);
}
int max = 0;
sum = 0;
// Second pass
for(int i = 0; i < nums.length; i++) {
// already have need nums[i] + nums[i+1] + .... + nums[j] = k
// sum up to j - previous sum
Integer lookup = map.get(k + sum);
if(lookup != null) {
max = Math.max(lookup - i + 1, max);
}
sum += nums[i];
}
return max;
}