在這篇短文中,您可以學(xué)習(xí)如何在Seurat v3對(duì)象上執(zhí)行基本的NicheNet分析,以及如何在circos圖中可視化輸出白指。值得注意的是,我們作為NicheNet的開發(fā)者疚宇,通常推薦通過(guò)結(jié)合幾個(gè)熱圖(配體活性、配體-靶標(biāo)鏈接赏殃、配體-受體鏈接敷待、配體表達(dá)、配體LFC等)來(lái)可視化輸出仁热,而不是使用circos圖可視化榜揖。無(wú)奈使用圈圖可視化的需求太多了,所以有了這篇教程抗蠢。
作為細(xì)胞相互作用的例子举哟,我們將使用Medaglia等人的小鼠NICHE-seq數(shù)據(jù)來(lái)探索淋巴細(xì)胞脈絡(luò)叢腦膜炎病毒(LCMV)感染前和72小時(shí)后腹股溝淋巴結(jié)T細(xì)胞區(qū)域的細(xì)胞間通訊[見(jiàn)@ medagli_spatial_2017]。我們將利用NicheNet來(lái)探索免疫細(xì)胞對(duì)這種LCMV感染的反應(yīng)迅矛。在本數(shù)據(jù)集中妨猩,觀察到穩(wěn)定狀態(tài)下的CD8 T細(xì)胞和LCMV感染后的CD8 T細(xì)胞之間的差異表達(dá)。NicheNet可以應(yīng)用于觀察淋巴結(jié)中的幾種免疫細(xì)胞群(如單核細(xì)胞秽褒、樹突狀細(xì)胞册赛、NK細(xì)胞、B細(xì)胞震嫉、CD4 T細(xì)胞)如何調(diào)節(jié)和誘導(dǎo)這些觀察到的基因表達(dá)變化森瘪。NicheNet將特別優(yōu)先考慮來(lái)自這些免疫細(xì)胞的配體及其在LCMV感染后表達(dá)改變的靶基因。
裝載所需的包票堵,用處理過(guò)的相互作用細(xì)胞的表達(dá)數(shù)據(jù)和NicheNet的配體-靶先驗(yàn)?zāi)P投蟛恰⑴潴w-受體網(wǎng)絡(luò)和加權(quán)綜合網(wǎng)絡(luò)讀取Seurat對(duì)象。
#devtools::install_github("saeyslab/nichenetr")
library(nichenetr)
library(Seurat)
library(tidyverse)
library(circlize)
ligand_target_matrix = readRDS(url("https://zenodo.org/record/3260758/files/ligand_target_matrix.rds"))
ligand_target_matrix[1:5,1:5]
CXCL1 CXCL2 CXCL3 CXCL5 PPBP
A1BG 3.534343e-04 4.041324e-04 3.729920e-04 3.080640e-04 2.628388e-04
A1BG-AS1 1.650894e-04 1.509213e-04 1.583594e-04 1.317253e-04 1.231819e-04
A1CF 5.787175e-04 4.596295e-04 3.895907e-04 3.293275e-04 3.211944e-04
A2M 6.027058e-04 5.996617e-04 5.164365e-04 4.517236e-04 4.590521e-04
A2M-AS1 8.898724e-05 8.243341e-05 7.484018e-05 4.912514e-05 5.120439e-05
> lr_network = readRDS(url("https://zenodo.org/record/3260758/files/lr_network.rds"))
> head(lr_network)
# A tibble: 6 x 4
from to source database
<chr> <chr> <chr> <chr>
1 CXCL1 CXCR2 kegg_cytokines kegg
2 CXCL2 CXCR2 kegg_cytokines kegg
3 CXCL3 CXCR2 kegg_cytokines kegg
4 CXCL5 CXCR2 kegg_cytokines kegg
5 PPBP CXCR2 kegg_cytokines kegg
6 CXCL6 CXCR2 kegg_cytokines kegg
weighted_networks = readRDS(url("https://zenodo.org/record/3260758/files/weighted_networks.rds"))
head(weighted_networks$lr_sig) # interactions and their weights in the ligand-receptor + signaling network
# A tibble: 6 x 3
from to weight
<chr> <chr> <dbl>
1 A1BG ABCC6 0.422
2 A1BG ACE2 0.101
3 A1BG ADAM10 0.0970
4 A1BG AGO1 0.0525
5 A1BG AKT1 0.0855
6 A1BG ANXA7 0.457
seuratObj = readRDS(url("https://zenodo.org/record/3531889/files/seuratObj.rds"))
seuratObj@meta.data %>% head()
## nGene nUMI orig.ident aggregate res.0.6 celltype nCount_RNA nFeature_RNA
## W380370 880 1611 LN_SS SS 1 CD8 T 1607 876
## W380372 541 891 LN_SS SS 0 CD4 T 885 536
## W380374 742 1229 LN_SS SS 0 CD4 T 1223 737
## W380378 847 1546 LN_SS SS 1 CD8 T 1537 838
## W380379 839 1606 LN_SS SS 0 CD4 T 1603 836
## W380381 517 844 LN_SS SS 0 CD4 T 840 513
seuratObj
An object of class Seurat
13541 features across 5027 samples within 1 assay
Active assay: RNA (13541 features, 1575 variable features)
4 dimensional reductions calculated: cca, cca.aligned, tsne, pca
觀察存在哪些細(xì)胞群:CD4 T細(xì)胞(包括調(diào)節(jié)性T細(xì)胞)悴势、CD8 T細(xì)胞窗宇、B細(xì)胞、NK細(xì)胞特纤、樹突狀細(xì)胞(DCs)和炎癥單核細(xì)胞
seuratObj@meta.data$celltype %>% table() # note that the number of cells of some cell types is very low and should preferably be higher for a real application
## .
## B CD4 T CD8 T DC Mono NK Treg
## 382 2562 1645 18 90 131 199
DimPlot(seuratObj, reduction = "tsne",label = T)+ theme_bw()
seuratObj@meta.data$aggregate %>% table()
## .
## LCMV SS
## 3886 1141
DimPlot(seuratObj, reduction = "tsne", group.by = "aggregate")
對(duì)Seurat對(duì)象的NicheNet分析:解釋兩種條件的差異表達(dá)军俊。在這個(gè)案例研究中,接收細(xì)胞群是' CD8 T '細(xì)胞群捧存,而發(fā)送細(xì)胞群是' CD4 T '粪躬, ' Treg ', ' Mono '昔穴, ' NK '镰官, ' B '和' DC '。以上描述的功能將考慮一個(gè)基因在至少一個(gè)集群中預(yù)定義的部分細(xì)胞(默認(rèn)為10%)中表達(dá)時(shí)的表達(dá)吗货。我們感興趣的基因是LCMV感染后CD8 T細(xì)胞中差異表達(dá)的基因泳唠。因此,感興趣的條件是“LCMV”宙搬,而參考/穩(wěn)態(tài)條件是“SS”笨腥。條件的信息可以從元數(shù)據(jù)列“aggregate”中提取出來(lái)拓哺,計(jì)算差異基因的方法是標(biāo)準(zhǔn)的Seurat Wilcoxon檢驗(yàn)。
用于預(yù)測(cè)活性靶基因和構(gòu)建活性配體-受體網(wǎng)絡(luò)的配體的數(shù)量默認(rèn)為20個(gè)脖母。
# indicated cell types should be cell class identities
# check via:
# seuratObj %>% Idents() %>% table()
sender_celltypes = c("CD4 T","Treg", "Mono", "NK", "B", "DC")
nichenet_output = nichenet_seuratobj_aggregate(
seurat_obj = seuratObj,
receiver = "CD8 T",
condition_colname = "aggregate", condition_oi = "LCMV", condition_reference = "SS",
sender = sender_celltypes,
ligand_target_matrix = ligand_target_matrix, lr_network = lr_network, weighted_networks = weighted_networks, organism = "mouse")
## [1] "Read in and process NicheNet's networks"
## [1] "Define expressed ligands and receptors in receiver and sender cells"
## [1] "Perform DE analysis in receiver cell"
## [1] "Perform NicheNet ligand activity analysis"
## [1] "Infer active target genes of the prioritized ligands"
## [1] "Infer receptors of the prioritized ligands"
# 輸出的是一個(gè)列表:
nichenet_output %>% names()
[1] "ligand_activities" "top_ligands" "top_targets"
[4] "top_receptors" "ligand_target_matrix" "ligand_target_heatmap"
[7] "ligand_target_df" "ligand_activity_target_heatmap" "ligand_receptor_matrix"
[10] "ligand_receptor_heatmap" "ligand_receptor_df" "ligand_receptor_matrix_bonafide"
[13] "ligand_receptor_heatmap_bonafide" "ligand_receptor_df_bonafide" "geneset_oi"
[16] "background_expressed_genes"
配體活性分析結(jié)果士鸥。NicheNet做的第一件事,是根據(jù)預(yù)測(cè)的配體活性來(lái)確定配體的優(yōu)先級(jí)镶奉。使用如下命令查看這些配體的排名:
nichenet_output$ligand_activities
## # A tibble: 44 x 6
## test_ligand auroc aupr pearson rank bona_fide_ligand
## <chr> <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 Ebi3 0.662 0.238 0.219 1 FALSE
## 2 Il15 0.596 0.160 0.109 2 TRUE
## 3 Crlf2 0.560 0.160 0.0890 3 FALSE
## 4 App 0.499 0.134 0.0750 4 TRUE
## 5 Tgfb1 0.498 0.134 0.0631 5 TRUE
## 6 Ptprc 0.539 0.142 0.0602 6 TRUE
## 7 H2-M3 0.526 0.149 0.0533 7 TRUE
## 8 Icam1 0.544 0.134 0.0496 8 TRUE
## 9 Cxcl10 0.536 0.134 0.0457 9 TRUE
## 10 Adam17 0.517 0.129 0.0378 10 TRUE
## # ... with 34 more rows
這些配體由一個(gè)或多個(gè)輸入發(fā)送細(xì)胞表達(dá)。要看哪個(gè)細(xì)胞群表達(dá)了這些配體崭放,你可以運(yùn)行以下程序:
DotPlot(seuratObj, features = nichenet_output$top_ligands %>% rev(), cols = "RdYlBu") + RotatedAxis()
如你所見(jiàn)哨苛,大多數(shù)排名靠前的op配體似乎主要由樹突狀細(xì)胞和單核細(xì)胞表達(dá)。
觀察這些配體在LCMV感染后是否有差異表達(dá)也是很有趣的币砂。
DotPlot(seuratObj, features = nichenet_output$top_ligands %>% rev(), split.by = "aggregate") + RotatedAxis()
VlnPlot(seuratObj, features = c("Il15", "Cxcl10","Cxcl16"), split.by = "aggregate", pt.size = 0, combine = T)
## [[1]]
推斷活躍的配體-靶標(biāo)連接
NicheNet還推斷出這些頂級(jí)配體的活性靶基因建峭。要查看哪個(gè)頂級(jí)配體被預(yù)測(cè)調(diào)控了哪些差異表達(dá)基因的表達(dá),可以運(yùn)行以下命令來(lái)查看熱圖:
nichenet_output$ligand_target_heatmap
Circos繪圖來(lái)可視化配體-靶標(biāo)和配體-受體的相互作用决摧。這一可視化分組根據(jù)最強(qiáng)表達(dá)的細(xì)胞類型預(yù)測(cè)活性配體亿蒸。因此,我們需要確定每種細(xì)胞類型掌桩,它們表達(dá)的配體比其他細(xì)胞類型更強(qiáng)边锁。計(jì)算發(fā)送細(xì)胞中平均配體表達(dá)量。
# avg_expression_ligands = AverageExpression(seuratObj %>% subset(subset = aggregate == "LCMV"),features = nichenet_output$top_ligands) # if want to look specifically in LCMV-only cells
avg_expression_ligands = AverageExpression(seuratObj, features = nichenet_output$top_ligands)
分配配體給發(fā)送細(xì)胞
為了給發(fā)送端細(xì)胞類型分配配體波岛,我們可以查找哪個(gè)發(fā)送端細(xì)胞類型的表達(dá)式高于平均值+ SD茅坛。
sender_ligand_assignment = avg_expression_ligands$RNA %>% apply(1, function(ligand_expression){
ligand_expression > (ligand_expression %>% mean() + ligand_expression %>% sd())
}) %>% t()
sender_ligand_assignment[1:4,1:4]
CD8 T CD4 T Treg B
Ebi3 FALSE FALSE FALSE FALSE
Il15 FALSE FALSE FALSE FALSE
Crlf2 FALSE FALSE FALSE FALSE
App FALSE FALSE FALSE FALSE
sender_ligand_assignment = sender_ligand_assignment %>% apply(2, function(x){x[x == TRUE]}) %>% purrr::keep(function(x){length(x) > 0})
names(sender_ligand_assignment)
## [1] "B" "NK" "Mono" "DC"
(sender_ligand_assignment)
$B
H2-M3
TRUE
$NK
Ptprc Itgb1
TRUE TRUE
$Mono
Ebi3 Crlf2 App Tgfb1 Cxcl10 Adam17 Cxcl11 Cxcl9 Sema4d C3 Anxa1
TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
$DC
Il15 Icam1 H2-T23 Ccl5 Cxcl16 Itgb1
TRUE TRUE TRUE TRUE TRUE TRUE
頂部的配體似乎在B細(xì)胞、NK細(xì)胞则拷、單核細(xì)胞和DCs中表達(dá)最強(qiáng)烈贡蓖。我們也會(huì)知道在多種細(xì)胞類型中哪些配體是常見(jiàn)的(=特定于> 1細(xì)胞類型的配體,或在之前的代碼塊中未指定給某個(gè)細(xì)胞類型的配體)』筒纾現(xiàn)在確定哪些優(yōu)先配體是由CAFs或內(nèi)皮細(xì)胞表達(dá)的斥铺。
all_assigned_ligands = sender_ligand_assignment %>% lapply(function(x){names(x)}) %>% unlist()
unique_ligands = all_assigned_ligands %>% table() %>% .[. == 1] %>% names()
general_ligands = nichenet_output$top_ligands %>% setdiff(unique_ligands)
B_specific_ligands = sender_ligand_assignment$B %>% names() %>% setdiff(general_ligands)
NK_specific_ligands = sender_ligand_assignment$NK %>% names() %>% setdiff(general_ligands)
Mono_specific_ligands = sender_ligand_assignment$Mono %>% names() %>% setdiff(general_ligands)
DC_specific_ligands = sender_ligand_assignment$DC %>% names() %>% setdiff(general_ligands)
ligand_type_indication_df = tibble(
ligand_type = c(rep("B-specific", times = B_specific_ligands %>% length()),
rep("NK-specific", times = NK_specific_ligands %>% length()),
rep("Mono-specific", times = Mono_specific_ligands %>% length()),
rep("DC-specific", times = DC_specific_ligands %>% length()),
rep("General", times = general_ligands %>% length())),
ligand = c(B_specific_ligands, NK_specific_ligands, Mono_specific_ligands, DC_specific_ligands, general_ligands))
ligand_type_indication_df %>% head
# A tibble: 6 x 2
ligand_type ligand
<chr> <chr>
1 B-specific H2-M3
2 NK-specific Ptprc
3 Mono-specific Ebi3
4 Mono-specific Crlf2
5 Mono-specific App
6 Mono-specific Tgfb1
定義感興趣的配體-目標(biāo)鏈接
為了避免circos圖中有太多配體目標(biāo)鏈接,我們將只顯示權(quán)重高于預(yù)定義截止值的鏈接:屬于最低分?jǐn)?shù)的40%的鏈接被刪除坛善。這并不是說(shuō)用于這種可視化的邊界和其他邊界可以根據(jù)用戶的需要進(jìn)行更改晾蜘。
active_ligand_target_links_df = nichenet_output$ligand_target_df %>% mutate(target_type = "LCMV-DE") %>% inner_join(ligand_type_indication_df) # if you want ot make circos plots for multiple gene sets, combine the different data frames and differentiate which target belongs to which gene set via the target type
cutoff_include_all_ligands = active_ligand_target_links_df$weight %>% quantile(0.40)
active_ligand_target_links_df_circos = active_ligand_target_links_df %>% filter(weight > cutoff_include_all_ligands)
ligands_to_remove = setdiff(active_ligand_target_links_df$ligand %>% unique(), active_ligand_target_links_df_circos$ligand %>% unique())
targets_to_remove = setdiff(active_ligand_target_links_df$target %>% unique(), active_ligand_target_links_df_circos$target %>% unique())
circos_links = active_ligand_target_links_df %>% filter(!target %in% targets_to_remove &!ligand %in% ligands_to_remove)
circos_links
# A tibble: 124 x 5
ligand target weight target_type ligand_type
<chr> <chr> <dbl> <chr> <chr>
1 Ebi3 Cd274 0.00325 LCMV-DE Mono-specific
2 Ebi3 Cd53 0.00321 LCMV-DE Mono-specific
3 Ebi3 Ddit4 0.00335 LCMV-DE Mono-specific
4 Ebi3 Id3 0.00373 LCMV-DE Mono-specific
5 Ebi3 Ifit3 0.00320 LCMV-DE Mono-specific
6 Ebi3 Irf1 0.00692 LCMV-DE Mono-specific
7 Ebi3 Irf7 0.00312 LCMV-DE Mono-specific
8 Ebi3 Irf9 0.00543 LCMV-DE Mono-specific
9 Ebi3 Parp14 0.00336 LCMV-DE Mono-specific
10 Ebi3 Pdcd4 0.00335 LCMV-DE Mono-specific
# ... with 114 more rows
準(zhǔn)備circos可視化:給每個(gè)片段配體和目標(biāo)特定的顏色和順序
grid_col_ligand =c("General" = "lawngreen",
"NK-specific" = "royalblue",
"B-specific" = "darkgreen",
"Mono-specific" = "violet",
"DC-specific" = "steelblue2")
grid_col_target =c(
"LCMV-DE" = "tomato")
grid_col_tbl_ligand = tibble(ligand_type = grid_col_ligand %>% names(), color_ligand_type = grid_col_ligand)
grid_col_tbl_target = tibble(target_type = grid_col_target %>% names(), color_target_type = grid_col_target)
circos_links = circos_links %>% mutate(ligand = paste(ligand," ")) # extra space: make a difference between a gene as ligand and a gene as target!
circos_links = circos_links %>% inner_join(grid_col_tbl_ligand) %>% inner_join(grid_col_tbl_target)
links_circle = circos_links %>% select(ligand,target, weight)
ligand_color = circos_links %>% distinct(ligand,color_ligand_type)
grid_ligand_color = ligand_color$color_ligand_type %>% set_names(ligand_color$ligand)
target_color = circos_links %>% distinct(target,color_target_type)
grid_target_color = target_color$color_target_type %>% set_names(target_color$target)
grid_col =c(grid_ligand_color,grid_target_color)
# give the option that links in the circos plot will be transparant ~ ligand-target potential score
transparency = circos_links %>% mutate(weight =(weight-min(weight))/(max(weight)-min(weight))) %>% mutate(transparency = 1-weight) %>% .$transparency
準(zhǔn)備可視化的circos:排序配體和目標(biāo)
target_order = circos_links$target %>% unique()
ligand_order = c(Mono_specific_ligands, DC_specific_ligands, NK_specific_ligands,B_specific_ligands, general_ligands) %>% c(paste(.," ")) %>% intersect(circos_links$ligand)
order = c(ligand_order,target_order)
準(zhǔn)備circos可視化:定義不同片段之間的間隙
width_same_cell_same_ligand_type = 0.5
width_different_cell = 6
width_ligand_target = 15
width_same_cell_same_target_type = 0.5
gaps = c(
# width_ligand_target,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "Mono-specific") %>% distinct(ligand) %>% nrow() -1)),
width_different_cell,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "DC-specific") %>% distinct(ligand) %>% nrow() -1)),
width_different_cell,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "NK-specific") %>% distinct(ligand) %>% nrow() -1)),
width_different_cell,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "B-specific") %>% distinct(ligand) %>% nrow() -1)),
width_different_cell,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "General") %>% distinct(ligand) %>% nrow() -1)),
width_ligand_target,
rep(width_same_cell_same_target_type, times = (circos_links %>% filter(target_type == "LCMV-DE") %>% distinct(target) %>% nrow() -1)),
width_ligand_target
)
渲染circos的情節(jié)(所有鏈接相同的透明度)。只有表明每個(gè)靶基因的阻滯的寬度與配體-靶的調(diào)控電位成正比(~支持調(diào)控相互作用的先驗(yàn)知識(shí))眠屎。
circos.par(gap.degree = gaps)
chordDiagram(links_circle, directional = 1,order=order,link.sort = TRUE, link.decreasing = FALSE, grid.col = grid_col,transparency = 0, diffHeight = 0.005, direction.type = c("diffHeight", "arrows"),link.arr.type = "big.arrow", link.visible = links_circle$weight >= cutoff_include_all_ligands,annotationTrack = "grid",
preAllocateTracks = list(track.height = 0.075))
# we go back to the first track and customize sector labels
circos.track(track.index = 1, panel.fun = function(x, y) {
circos.text(CELL_META$xcenter, CELL_META$ylim[1], CELL_META$sector.index,
facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.55), cex = 1)
}, bg.border = NA) #
circos.clear()
繪制circos圖(透明度由配體-靶標(biāo)相互作用的調(diào)控潛力決定)
circos.par(gap.degree = gaps)
chordDiagram(links_circle, directional = 1,order=order,link.sort = TRUE, link.decreasing = FALSE, grid.col = grid_col,transparency = transparency, diffHeight = 0.005, direction.type = c("diffHeight", "arrows"),link.arr.type = "big.arrow", link.visible = links_circle$weight >= cutoff_include_all_ligands,annotationTrack = "grid",
preAllocateTracks = list(track.height = 0.075))
# we go back to the first track and customize sector labels
circos.track(track.index = 1, panel.fun = function(x, y) {
circos.text(CELL_META$xcenter, CELL_META$ylim[1], CELL_META$sector.index,
facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.55), cex = 1)
}, bg.border = NA) #
circos.clear()
svg("ligand_target_circos.svg", width = 10, height = 10)
circos.par(gap.degree = gaps)
chordDiagram(links_circle, directional = 1,order=order,link.sort = TRUE, link.decreasing = FALSE, grid.col = grid_col,transparency = transparency, diffHeight = 0.005, direction.type = c("diffHeight", "arrows"),link.arr.type = "big.arrow", link.visible = links_circle$weight >= cutoff_include_all_ligands,annotationTrack = "grid",
preAllocateTracks = list(track.height = 0.075))
# we go back to the first track and customize sector labels
circos.track(track.index = 1, panel.fun = function(x, y) {
circos.text(CELL_META$xcenter, CELL_META$ylim[1], CELL_META$sector.index,
facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.55), cex = 1)
}, bg.border = NA) #
circos.clear()
dev.off()
在circos圖中可視化優(yōu)先配體與受體的相互作用
lr_network_top_df = nichenet_output$ligand_receptor_df %>% mutate(receptor_type = "LCMV_CD8T_receptor") %>% inner_join(ligand_type_indication_df)
grid_col_ligand =c("General" = "lawngreen",
"NK-specific" = "royalblue",
"B-specific" = "darkgreen",
"Mono-specific" = "violet",
"DC-specific" = "steelblue2")
grid_col_receptor =c(
"LCMV_CD8T_receptor" = "darkred")
grid_col_tbl_ligand = tibble(ligand_type = grid_col_ligand %>% names(), color_ligand_type = grid_col_ligand)
grid_col_tbl_receptor = tibble(receptor_type = grid_col_receptor %>% names(), color_receptor_type = grid_col_receptor)
circos_links = lr_network_top_df %>% mutate(ligand = paste(ligand," ")) # extra space: make a difference between a gene as ligand and a gene as receptor!
circos_links = circos_links %>% inner_join(grid_col_tbl_ligand) %>% inner_join(grid_col_tbl_receptor)
links_circle = circos_links %>% select(ligand,receptor, weight)
ligand_color = circos_links %>% distinct(ligand,color_ligand_type)
grid_ligand_color = ligand_color$color_ligand_type %>% set_names(ligand_color$ligand)
receptor_color = circos_links %>% distinct(receptor,color_receptor_type)
grid_receptor_color = receptor_color$color_receptor_type %>% set_names(receptor_color$receptor)
grid_col =c(grid_ligand_color,grid_receptor_color)
# give the option that links in the circos plot will be transparant ~ ligand-receptor potential score
transparency = circos_links %>% mutate(weight =(weight-min(weight))/(max(weight)-min(weight))) %>% mutate(transparency = 1-weight) %>% .$transparency
制備可視化的circos:有序配體和受體
receptor_order = circos_links$receptor %>% unique()
ligand_order = c(Mono_specific_ligands, DC_specific_ligands, NK_specific_ligands,B_specific_ligands, general_ligands) %>% c(paste(.," ")) %>% intersect(circos_links$ligand)
order = c(ligand_order,receptor_order)
準(zhǔn)備馬戲團(tuán)可視化:定義不同片段之間的間隙
width_same_cell_same_ligand_type = 0.5
width_different_cell = 6
width_ligand_receptor = 15
width_same_cell_same_receptor_type = 0.5
gaps = c(
# width_ligand_target,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "Mono-specific") %>% distinct(ligand) %>% nrow() -1)),
width_different_cell,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "DC-specific") %>% distinct(ligand) %>% nrow() -1)),
width_different_cell,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "NK-specific") %>% distinct(ligand) %>% nrow() -1)),
width_different_cell,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "B-specific") %>% distinct(ligand) %>% nrow() -1)),
width_different_cell,
rep(width_same_cell_same_ligand_type, times = (circos_links %>% filter(ligand_type == "General") %>% distinct(ligand) %>% nrow() -1)),
width_ligand_receptor,
rep(width_same_cell_same_receptor_type, times = (circos_links %>% filter(receptor_type == "LCMV_CD8T_receptor") %>% distinct(receptor) %>% nrow() -1)),
width_ligand_receptor
)
渲染馬戲團(tuán)的情節(jié)(所有鏈接相同的透明度)笙纤。只有表明每個(gè)受體的阻滯的寬度與配體-受體相互作用的重量成比例(~支持相互作用的先驗(yàn)知識(shí))。
circos.par(gap.degree = gaps)
chordDiagram(links_circle, directional = 1,order=order,link.sort = TRUE, link.decreasing = FALSE, grid.col = grid_col,transparency = 0, diffHeight = 0.005, direction.type = c("diffHeight", "arrows"),link.arr.type = "big.arrow", link.visible = links_circle$weight >= cutoff_include_all_ligands,annotationTrack = "grid",
preAllocateTracks = list(track.height = 0.075))
# we go back to the first track and customize sector labels
circos.track(track.index = 1, panel.fun = function(x, y) {
circos.text(CELL_META$xcenter, CELL_META$ylim[1], CELL_META$sector.index,
facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.55), cex = 0.8)
}, bg.border = NA) #
circos.clear()
渲染circos圖(透明程度由配體-受體相互作用的先驗(yàn)相互作用權(quán)重決定——正如指示每個(gè)受體的塊的寬度)
circos.par(gap.degree = gaps)
chordDiagram(links_circle, directional = 1,order=order,link.sort = TRUE, link.decreasing = FALSE, grid.col = grid_col,transparency = transparency, diffHeight = 0.005, direction.type = c("diffHeight", "arrows"),link.arr.type = "big.arrow", link.visible = links_circle$weight >= cutoff_include_all_ligands,annotationTrack = "grid",
preAllocateTracks = list(track.height = 0.075))
# we go back to the first track and customize sector labels
circos.track(track.index = 1, panel.fun = function(x, y) {
circos.text(CELL_META$xcenter, CELL_META$ylim[1], CELL_META$sector.index,
facing = "clockwise", niceFacing = TRUE, adj = c(0, 0.55), cex = 0.8)
}, bg.border = NA) #
circos.clear()
Perform NicheNet analysis starting from a Seurat object:vignette("seurat_wrapper", package="nichenetr")
Circos plot visualization to show active ligand-target links between interacting cells:
https://github.com/saeyslab/nichenetr/blob/master/vignettes/seurat_wrapper_circos.md
https://github.com/saeyslab/nichenetr/issues/5