The emoji-weather visualization of beijing in 2016
=================================================
Use the emoji-icon to visualize weather state of beijing in 2016!
------------------------------------------------------
library(RCurl)
library(XML)
library(dplyr)
library(stringr)
library(tidyr)
library(plyr)
library(rvest)
library(ggimage)
library(Cairo)
library(showtext)
library(lubridate)
url<-"http://lishi.tianqi.com/beijing/index.html"
myheader <-c("User-Agent"="Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36")
webpage<-getURL(url,httpheader=myheader)
mymonthlink<-getHTMLLinks(url,externalOnly=TRUE)%>%grep(".*?2016\\d{2}.html",.,value=T)
a failure attempt:
####
#page1<-getURL(mymonthlink[2],.encoding="gbk")
#rd<-iconv(page1,"gbk","utf-8")
#rdhtml<-htmlParse(rd,encoding="UTF-8")
#cesh<-readHTMLList(rdhtml,trim=TRUE,elFun=xmlValue)%>%grep("\\d{4}-\\d{2}-\\d{2}",.,value=T)
#cesh<-cesh%>%sub("([a-z])(\\()(\\\)","",.)
#cesh<-cesh1%>%str_split(',')%>%plyr::ldply(.fun=NULL)
#cesh$V1<-cesh$V1%>%sub("[a-z]\\(","",.)%>%as.Date()
#names(cesh)<-c("date","high","low","state","wind","index")
####
以上代碼寫了一半寫不下去了,我有rvest為啥要用RCurl赋元,肯定自己腦抽筋了九妈!
then i find a batter way to get the target data.
mynewdata<-c()
for (i in mymonthlink){
mymonthdata<-read_html(i,encoding="gbk")%>%html_nodes("div.tqtongji2>ul")%>%html_text(trim=FALSE)%>%str_trim(.,side="right")%>%.[-1]
mynewdata<-c(mynewdata,mymonthdata)
}
mynewdata1<-mynewdata
mynewdata<-mynewdata1%>%gsub("\t\t\t|\t|\r\n","",.)%>%str_split(' ')%>%plyr::ldply(.fun=NULL)%>%.[,-2]
names(mynewdata)<-c("date","high","low","state","wind","index")
mynewdata$date<-as.Date(mynewdata$date)
mynewdata$high<-as.numeric(mynewdata$high)
mynewdata$low<-as.numeric(mynewdata$low)
#cleanning the dirty data.
unique(mynewdata$state)
happy<-c("晴","陣雨~晴","多云轉(zhuǎn)晴","多云~晴","雷陣雨~晴","陰~晴","霾~晴","浮塵~晴")
depressed<-c("霾","陰","多云","晴~多云","霾~多云","晴~霾","多云~霾","陣雨轉(zhuǎn)多云","多云轉(zhuǎn)陰","陰~多云","多云~陰","晴~陰","陣雨~多云","小雨~多云","小雨~陰","霾~霧","小雪~陰","陰~小雪","小雨~雨夾雪")
angry<-c("小雨","雨夾雪","小雪","雷陣雨","陣雨","中雨","小到中雨","雷陣雨~陰","多云~雷陣雨","陰~雷陣雨","霾~雷陣雨","多云~陣雨","晴~陣雨","陰~小雨","陣雨~小雨")
Terrified<-c("中到大雨","暴雨","雷陣雨~中到大雨")
#create a new factor[categorical] varibale.
mynewdata$mode<-NULL
mynewdata$mood<-ifelse(mynewdata$state%in% happy,"happy",ifelse(mynewdata$state%in% depressed,"depressed",ifelse(mynewdata$state%in% angry,"angry","Terrified")))
mynewdata <- within(mynewdata,{
mood_code <- NA
mood_code[mood=="happy"]<-"1f604"
mood_code[mood=="depressed"]<-"1f633"
mood_code[mood=="angry"]<-"1f62d"
mood_code[mood=="Terrified"]<-"1f621"
})
#tidy the time/date varibales.
mynewdata$month<-as.numeric(as.POSIXlt(mynewdata$date)$mon+1)
mynewdata$monthf<-factor(mynewdata$month,levels=as.character(1:12),labels=c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"),ordered=TRUE)
mynewdata$weekday<-as.POSIXlt(mynewdata$date)$wday
mynewdata$weekdayf<-factor(mynewdata$weekday,levels=rev(0:6),labels=rev(c("Sun","Mon","Tue","Wed","Thu","Fri","Sat")),ordered=TRUE)
mynewdata$week <- as.numeric(format(mynewdata$date,"%W"))
mynewdata<-ddply(mynewdata,.(monthf),transform,monthweek=1+week-min(week))
mynewdata$day<-day(mynewdata$date)
setwd("F:/數(shù)據(jù)可視化/R/R語言學(xué)習(xí)筆記/可視化/ggplot2/商務(wù)圖表")
write.table(mynewdata,"historyweather.csv",sep=",",row.names=FALSE)
mynewdata<-read.csv("historyweather.csv",stringsAsFactors = FALSE,check.names = FALSE)
#first theme:
mytheme<-theme(
rect=element_blank(),
axis.ticks=element_blank(),
text=element_text(face="plain",lineheight=0.9,hjust=0.5,vjust=0.5,size=15),
title=element_text(face="plain",lineheight=0.9,hjust=0,vjust=0.5,size=30),
axis.title=element_blank(),
strip.text=element_text(size = rel(0.8)),
plot.margin = unit(c(5,2,5,2),"lines")
)
the first photo:
CairoPNG("emoji1.png",1000,870)
showtext.begin()
ggplot(mynewdata,aes(weekdayf,monthweek,fill=high))+
geom_tile(colour='white')+
scale_fill_gradient(low=NA, high=NA,guide=FALSE)+
ggtitle("The emoji-weather visualization of beijing in 2016")+
scale_y_reverse(breaks=seq(from=6,to=0,by=-1))+
ggimage::geom_emoji(aes(image=mood_code),size=.1)+
facet_wrap(~monthf ,nrow=3)+
mytheme
showtext.end()
dev.off()
second theme:
mytheme2<-theme(
rect=element_blank(),
axis.ticks=element_blank(),
text=element_text(face="plain",lineheight=0.9,hjust=0.5,vjust=0.5,size=15),
title=element_text(face="plain",lineheight=0.9,hjust=0,vjust=0.5,size=30),
axis.title=element_blank(),
strip.text=element_text(size = rel(0.8)),
plot.margin = unit(c(1,1,1,1),"lines")
)
second photo:
CairoPNG("emoji2.png",1200,1200)
showtext.begin()
ggplot(mynewdata,aes(x=factor(day),y=monthf,fill=high))+
geom_tile(colour='white')+
expand_limits(y =c(-12,12))+
scale_x_discrete(position=c("bottom"))+
coord_polar(theta="x")+
scale_fill_gradient(low=NA, high=NA,guide=FALSE)+
ggimage::geom_emoji(aes(image=mood_code),size=.015)+
geom_image(aes(x=0,y=-12),image ="weather.png", size =.15)+
ggtitle("The emoji-weather visualization of beijing in 2016")+
mytheme2
showtext.end()
dev.off()
?聯(lián)系方式:
----------------------------------------------------
wechat:ljty1991
Mail:578708965@qq.com
個人公眾號:數(shù)據(jù)小魔方(datamofang)
團隊公眾號:EasyCharts
qq交流群:[魔方學(xué)院]553270834個人簡介:
-------------------------------------------------
**杜雨**
財經(jīng)專業(yè)研究僧;
偽數(shù)據(jù)可視化達人猎拨;
文科背景的編程小白膀藐;
喜歡研究商務(wù)圖表與地理信息數(shù)據(jù)可視化,愛倒騰PowerBI红省、SAP DashBoard额各、Tableau、R ggplot2吧恃、Think-cell chart等諸如此類的數(shù)據(jù)可視化軟件虾啦,創(chuàng)建并運營微信公眾號“數(shù)據(jù)小魔方”。
Mail:578708965@qq.com
本作品采用知識共享署名-非商業(yè)性使用 4.0 國際許可協(xié)議進行許可痕寓。