InfuxDB函數(shù)說明

1. 聚合函數(shù)

1.1 COUNT()

描述:返回單個字段中非空(non-null)值的數(shù)量
語法

SELECT COUNT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

例子:

  • 計算字段water_level非空值的數(shù)量
> SELECT COUNT("water_level") FROM "h2o_feet"
name: h2o_feet
--------------
time                           count
1970-01-01T00:00:00Z     15258
  • 計算字段water_level非空值的數(shù)量,按時間間隔分組
> SELECT COUNT("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)
name: h2o_feet
--------------
time                           count
2015-08-17T00:00:00Z     1440
2015-08-21T00:00:00Z     1920
2015-08-25T00:00:00Z     1920
2015-08-29T00:00:00Z     1920
2015-09-02T00:00:00Z     1915
2015-09-06T00:00:00Z     1920
2015-09-10T00:00:00Z     1920
2015-09-14T00:00:00Z     1920
2015-09-18T00:00:00Z     335
  • h2o_feet有兩個數(shù)據(jù)字段level descriptionwater_level,可以通過count(*) 統(tǒng)計所有的字段
> SELECT COUNT(*) FROM "h2o_feet"
name: h2o_feet
--------------
time                   count_level description      count_water_level
1970-01-01T00:00:00Z   15258                       15258

1.2 DISTINCT()

說明:返回字段的唯一值(去重)
語法

SELECT DISTINCT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

例子:

  • 全表單字段
> SELECT DISTINCT("level description") FROM "h2o_feet"
name: h2o_feet
--------------
time                           distinct
1970-01-01T00:00:00Z     between 6 and 9 feet
1970-01-01T00:00:00Z     below 3 feet
1970-01-01T00:00:00Z     between 3 and 6 feet
1970-01-01T00:00:00Z     at or greater than 9 feet
  • 分組單字段
> SELECT DISTINCT("level description") FROM "h2o_feet" GROUP BY "location"
name: h2o_feet
tags: location=coyote_creek
time                            distinct
----                            --------
1970-01-01T00:00:00Z      between 6 and 9 feet
1970-01-01T00:00:00Z      between 3 and 6 feet
1970-01-01T00:00:00Z      below 3 feet
1970-01-01T00:00:00Z      at or greater than 9 feet

name: h2o_feet
tags: location=santa_monica
time                            distinct
----                            --------
1970-01-01T00:00:00Z      below 3 feet
1970-01-01T00:00:00Z      between 3 and 6 feet
1970-01-01T00:00:00Z      between 6 and 9 feet
  • 多字段
> SELECT DISTINCT(*) FROM "h2o_feet" LIMIT 5
name: h2o_feet
--------------
time                   distinct_level description    distinct_water_level
1970-01-01T00:00:00Z   below 3 feet                  2.064
1970-01-01T00:00:00Z   between 6 and 9 feet          8.12
1970-01-01T00:00:00Z                                 2.116
1970-01-01T00:00:00Z                                 8.005
1970-01-01T00:00:00Z                                 2.028

1.3 MEAN()

說明:算術平均值,字段類型必須為整型(int64)或浮點型(float64)
語法

SELECT MEAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

例子:

  • 時間在2016-08-18T00:00:00Z2016-09-18T17:00:00Z之間秕豫,按4天(time(4d))進行分組
> SELECT MEAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)
name: h2o_feet
--------------
time                     mean
2016-08-17T00:00:00Z     4.322029861111125
2016-08-21T00:00:00Z     4.251395512375667
2016-08-25T00:00:00Z     4.285036458333324
2016-08-29T00:00:00Z     4.469495801899061
2016-09-02T00:00:00Z     4.382785378590083
2016-09-06T00:00:00Z     4.28849666349042
...

1.4 MEDIAN()

說明:返回中位數(shù)朴艰,字段類型必須為整型(int64)或浮點型(float64),*表示所有字段
語法

SELECT MEDIAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

例子:

> SELECT MEDIAN("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY "location"
name: h2o_feet
tags: location = coyote_creek
time                           median
----                           ------
2015-08-18T00:00:00Z     7.8245

name: h2o_feet
tags: location = santa_monica
time                           median
----                           ------
2015-08-18T00:00:00Z     2.0575

1.5 MODE()

說明:返回最頻繁的(出現(xiàn)頻率最高的)值混移,如果有多個頻率相同的值則返回第一個(最早的)
語法

SELECT MODE(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

例子:

> SELECT MODE("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY "location"
name: h2o_feet
tags: location = coyote_creek
time                           mode
----                           ------
2015-08-18T00:00:00Z     7

name: h2o_feet
tags: location = santa_monica
time                           mode
----                           ------
2015-08-18T00:00:00Z     2

1.5 SPREAD()

說明:返回字段的最小值和最大值之間的差值祠墅。 該字段必須是int64float64類型; *表示表中的所有int64float64字段。

語法

SELECT SPREAD(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

例子:

> SELECT SPREAD("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-09-18T17:00:00Z' AND time < '2015-09-18T20:30:00Z' GROUP BY time(30m)
name: h2o_feet
--------------
time                            spread
2015-09-18T17:00:00Z      0.16699999999999982
2015-09-18T17:30:00Z      0.5469999999999997
2015-09-18T18:00:00Z      0.47499999999999964
2015-09-18T18:30:00Z      0.2560000000000002
2015-09-18T19:00:00Z      0.23899999999999988
2015-09-18T19:30:00Z      0.1609999999999996
2015-09-18T20:00:00Z      0.16800000000000015

1.6 SUM()

說明:返回單個字段中所有值的總和歌径。 該字段必須是int64float64類型; *表示表中的所有int64float64字段毁嗦。

語法

SELECT SUM(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

例子:

> SELECT SUM("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(5d)
name: h2o_feet
--------------
time                           sum
2015-08-18T00:00:00Z     10334.908999999983
2015-08-23T00:00:00Z     10113.356999999995
2015-08-28T00:00:00Z     10663.683000000006
2015-09-02T00:00:00Z     10451.321
2015-09-07T00:00:00Z     10871.817999999994
2015-09-12T00:00:00Z     11459.00099999999
2015-09-17T00:00:00Z     3627.762000000003

1.7 STDDEV()

說明:返回單個字段中的值的標準偏差。 該字段必須是int64float64類型回铛。
語法

SELECT STDDEV(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

2. 選擇器函數(shù)

2.1 BOTTOM()

說明:返回單個字段中最小的N個值狗准。 字段類型必須為int64float64。當同步指定tag時茵肃,設定tag的記錄數(shù)是X腔长,如果N>X時只返回X條記錄,每個tag一條,否則返回最小的N條數(shù)據(jù)验残。
語法

SELECT BOTTOM(<field_key>[,<tag_keys>],<N>)[,<tag_keys>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

2.2 FIRST()

說明:返回單個字段的最舊值(由時間戳確定)捞附。
語法

SELECT FIRST(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

2.3 LAST()

說明:返回單個字段的最新值(由時間戳確定)。

SELECT LAST(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

2.4 MAX()

說明:返回單個字段中的最大值您没。 該字段必須是int64鸟召,float64boolean
語法

SELECT MAX(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

2.5 MIN()

說明:返回單個字段中的最小值氨鹏。 該字段必須是int64欧募,float64boolean
語法

SELECT MIN(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

2.6 PERCENTILE()

說明:返回單個字段的排序值的第N個百分位數(shù)值仆抵。 該字段必須是int64float64類型跟继。 百分位數(shù)N必須是0100之間的整數(shù)或浮點數(shù),包括0100肢础。算法找度娘还栓。
語法

SELECT PERCENTILE(<field_key>, <N>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

2.7 SAMPLE()

說明:返回指定字段的N個點的隨機抽樣。 InfluxDB使用儲層采樣來生成隨機點传轰。 SAMPLE()支持所有字段類型剩盒。
語法

SELECT SAMPLE(<field_key>,<N>) FROM_clause [WHERE_clause] [GROUP_BY_clause]

2.8 TOP()

說明:返回單個字段中最大的N個值。 字段類型必須為int64float64
語法

SELECT TOP(<field_key>[,<tag_keys>],<N>)[,<tag_keys>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

3. 轉換函數(shù)

3.1 CUMULATIVE_SUM()

說明:返回單個字段的連續(xù)字段值的累積和辽聊。 字段類型必須為int64float64纪挎。
基礎語法

SELECT CUMULATIVE_SUM(<field_key>) FROM_clause WHERE_clause

高級語法
支持如下嵌套函數(shù)類型:COUNT()
, MEAN()
, MEDIAN()
, MODE()
, SUM()
, FIRST()
, LAST()
, MIN()
,MAX()
, and PERCENTILE()
.

SELECT CUMULATIVE_SUM(<function>(<field_key>)) FROM_clause WHERE_clause GROUP BY time(<interval>)[,<tag_key>]

例子

##原數(shù)據(jù)
> SELECT "water_level" FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica'
name: h2o_feet
time                   water_level
----                   -----------
2015-08-18T00:00:00Z   2.064
2015-08-18T00:06:00Z   2.116
2015-08-18T00:12:00Z   2.028
2015-08-18T00:18:00Z   2.126
2015-08-18T00:24:00Z   2.041
2015-08-18T00:30:00Z   2.051
##轉換后數(shù)據(jù)
> SELECT CUMULATIVE_SUM("water_level") FROM "h2o_feet" WHERE time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:30:00Z' AND "location" = 'santa_monica'
name: h2o_feet
time                   cumulative_sum
----                   --------------
2015-08-18T00:00:00Z   2.064
2015-08-18T00:06:00Z   4.18
2015-08-18T00:12:00Z   6.208
2015-08-18T00:18:00Z   8.334
2015-08-18T00:24:00Z   10.375
2015-08-18T00:30:00Z   12.426

3.2 DERIVATIVE()

說明:返回系列中單個字段中值的變化率。 InfluxDB計算時間域值之間的差異跟匆,并將這些結果轉換為單位變化率异袄。 單位參數(shù)是可選的,如果未指定玛臂,則默認為1秒(1秒)烤蜕。
基礎語法

SELECT DERIVATIVE(<field_key>, [<unit>]) FROM <measurement_name> [WHERE <stuff>]

單位unit可以有如下值:

  • u or μ微妙(microseconds)
  • ms 毫秒(milliseconds)
  • s 秒(seconds)
  • m 分(minutes)
  • h 時(hours)
  • d 天(days)
  • w 周(weeks)

使用聚合函數(shù)語法

SELECT DERIVATIVE(AGGREGATION_FUNCTION(<field_key>),[<unit>]) FROM <measurement_name> WHERE <stuff> GROUP BY time(<aggregation_interval>)

例子

#原數(shù)據(jù),兩條數(shù)據(jù)直接間隔6分鐘
> SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' LIMIT 5
name: h2o_feet
--------------
time                           water_level
2015-08-18T00:00:00Z     2.064
2015-08-18T00:06:00Z     2.116
2015-08-18T00:12:00Z     2.028
2015-08-18T00:18:00Z     2.126
2015-08-18T00:24:00Z     2.041
2015-08-18T00:30:00Z     2.051

#不指定單位時,默認為每秒變化率迹冤,如第一條記錄(`(2.116-2.064)/(6m/1s)`)
> SELECT DERIVATIVE("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' LIMIT 5
name: h2o_feet
--------------
time                           derivative
2015-08-18T00:06:00Z     0.00014444444444444457
2015-08-18T00:12:00Z     -0.00024444444444444465
2015-08-18T00:18:00Z     0.0002722222222222218
2015-08-18T00:24:00Z     -0.000236111111111111
2015-08-18T00:30:00Z     2.777777777777842e-05

#每6分鐘變化率讽营,如第一條(`(2.116-2.064)/(6m/6m)`)
> SELECT DERIVATIVE("water_level",6m) FROM "h2o_feet" WHERE "location" = 'santa_monica' LIMIT 5
name: h2o_feet
--------------
time                           derivative
2015-08-18T00:06:00Z     0.052000000000000046
2015-08-18T00:12:00Z     -0.08800000000000008
2015-08-18T00:18:00Z     0.09799999999999986
2015-08-18T00:24:00Z     -0.08499999999999996
2015-08-18T00:30:00Z     0.010000000000000231

#每12分鐘變化率,如第一條(`(2.116-2.064)/(6m/12m)`)
> SELECT DERIVATIVE("water_level",12m) FROM "h2o_feet" WHERE "location" = 'santa_monica' LIMIT 5
name: h2o_feet
--------------
time                           derivative
2015-08-18T00:06:00Z     0.10400000000000009
2015-08-18T00:12:00Z     -0.17600000000000016
2015-08-18T00:18:00Z     0.19599999999999973
2015-08-18T00:24:00Z     -0.16999999999999993
2015-08-18T00:30:00Z     0.020000000000000462

#每隔12分鐘最大值
> SELECT MAX("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY time(12m)
name: h2o_feet
--------------
time                           max
2015-08-18T00:00:00Z     2.116
2015-08-18T00:12:00Z     2.126
2015-08-18T00:24:00Z     2.051
#每隔12分鐘變化率,如第一條(`(2.126-2.116)/(12m-12m)`),帶group by 語句時unit默認為time函數(shù)指定的間隔
> SELECT DERIVATIVE(MAX("water_level")) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY time(12m)
name: h2o_feet
--------------
time                           derivative
2015-08-18T00:12:00Z     0.009999999999999787
2015-08-18T00:24:00Z     -0.07499999999999973

#每隔18分鐘匯總數(shù)據(jù)
> SELECT SUM("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY time(18m)
name: h2o_feet
--------------
time                           sum
2015-08-18T00:00:00Z     6.208
2015-08-18T00:18:00Z     6.218

#每隔18分鐘匯總數(shù)據(jù)沒6分鐘變化率泡徙,如第一條(`(6.218-6.208)/(18m/6m)`)
> SELECT DERIVATIVE(SUM("water_level"),6m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY time(18m)
name: h2o_feet
--------------
time                           derivative
2015-08-18T00:18:00Z     0.0033333333333332624

3.3 DIFFERENCE()

說明:返回單個字段中連續(xù)的時間順序值之間的差異橱鹏。 字段類型必須為int64float64
基礎語法

SELECT DIFFERENCE(<field_key>) FROM <measurement_name> [WHERE <stuff>]

高級語法

SELECT DIFFERENCE(<function>(<field_key>)) FROM <measurement_name> WHERE <stuff> GROUP BY time(<time_interval>)

支持的內嵌函數(shù)包括:COUNT()
, MEAN()
, MEDIAN()
, SUM()
, FIRST()
,LAST()
, MIN()
, MAX()
, and PERCENTILE()
堪藐。
例子

#帶處理數(shù)據(jù)
> SELECT "water_level" FROM "h2o_feet" WHERE "location"='santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z'
name: h2o_feet
--------------
time                            water_level
2015-08-18T00:00:00Z      2.064
2015-08-18T00:06:00Z      2.116
2015-08-18T00:12:00Z      2.028
2015-08-18T00:18:00Z      2.126
2015-08-18T00:24:00Z      2.041
2015-08-18T00:30:00Z      2.051
2015-08-18T00:36:00Z      2.067
#處理后
> SELECT DIFFERENCE("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z'
name: h2o_feet
--------------
time                            difference
2015-08-18T00:06:00Z      0.052000000000000046
2015-08-18T00:12:00Z      -0.08800000000000008
2015-08-18T00:18:00Z      0.09799999999999986
2015-08-18T00:24:00Z      -0.08499999999999996
2015-08-18T00:30:00Z      0.010000000000000231
2015-08-18T00:36:00Z      0.016000000000000014
#分組統(tǒng)計后數(shù)據(jù)
> SELECT MIN("water_level") FROM "h2o_feet" WHERE "location"='santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z' GROUP BY time(12m)
name: h2o_feet
--------------
time                            min
2015-08-18T00:00:00Z    2.064
2015-08-18T00:12:00Z    2.028
2015-08-18T00:24:00Z    2.041
2015-08-18T00:36:00Z    2.067
#分組統(tǒng)計處理后數(shù)據(jù)
> SELECT DIFFERENCE(MIN("water_level")) FROM "h2o_feet" WHERE "location"='santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z' GROUP BY time(12m)
name: h2o_feet
--------------
time                            difference
2015-08-18T00:12:00Z      -0.03600000000000003
2015-08-18T00:24:00Z      0.0129999999999999
2015-08-18T00:36:00Z      0.026000000000000245

3.4 ELAPSED()

說明:返回單個字段中后續(xù)時間戳之間的差異莉兰。 持續(xù)時間(unit)參數(shù)是可選的檀蹋,如果未指定恬涧,則默認為一納秒。
語法

SELECT ELAPSED(<field_key>, <unit>) FROM <measurement_name> [WHERE <stuff>]

例子

#原數(shù)據(jù)
> SELECT "water_level" FROM "h2o_feet" WHERE "location"='santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z'
name: h2o_feet
--------------
time                            water_level
2015-08-18T00:00:00Z      2.064
2015-08-18T00:06:00Z      2.116
2015-08-18T00:12:00Z      2.028
2015-08-18T00:18:00Z      2.126
2015-08-18T00:24:00Z      2.041
#每兩個`water_level`數(shù)據(jù)記錄直接的時間間隔是6分鐘(即360000000000納秒)席噩,elapsed = 6m/1納秒
> SELECT ELAPSED("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:24:00Z'
name: h2o_feet
--------------
time                            elapsed
2015-08-18T00:06:00Z      360000000000
2015-08-18T00:12:00Z      360000000000
2015-08-18T00:18:00Z      360000000000
2015-08-18T00:24:00Z      360000000000
#每兩個`water_level`數(shù)據(jù)記錄直接的時間間隔是6分鐘模捂,elapsed = 6m/1m
> SELECT ELAPSED("water_level",1m) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:24:00Z'
name: h2o_feet
--------------
time                            elapsed
2015-08-18T00:06:00Z      6
2015-08-18T00:12:00Z      6
2015-08-18T00:18:00Z      6
2015-08-18T00:24:00Z      6
#每兩個`water_level`數(shù)據(jù)記錄直接的時間間隔是6分鐘寂嘉,elapsed = 6m / 1h。因為1h>6m,所以數(shù)據(jù)為0
> SELECT ELAPSED("water_level",1h) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:24:00Z'
name: h2o_feet
--------------
time                            elapsed
2015-08-18T00:06:00Z      0
2015-08-18T00:12:00Z      0
2015-08-18T00:18:00Z      0
2015-08-18T00:24:00Z      0

3.5 MOVING_AVERAGE()

說明:返回單個字段的連續(xù)window個字段值的滑動平均值枫绅。 字段類型必須為int64float64。算法找度娘
基礎語法

SELECT MOVING_AVERAGE(<field_key>,<window>) FROM <measurement_name> [WHERE <stuff>]

高級語法

SELECT MOVING_AVERAGE(<function>(<field_key>),<window>) FROM <measurement_name> WHERE <stuff> GROUP BY time(<time_interval>)

支持的函數(shù)包括:COUNT()
, MEAN()
, MEDIAN()
, SUM()
, FIRST()
,LAST()
, MIN()
, MAX()
, and PERCENTILE()
硼端。
例子

> SELECT "water_level" FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z'
name: h2o_feet
--------------
time                            water_level
2015-08-18T00:00:00Z      2.064
2015-08-18T00:06:00Z      2.116
2015-08-18T00:12:00Z      2.028
2015-08-18T00:18:00Z      2.126
2015-08-18T00:24:00Z      2.041
2015-08-18T00:30:00Z      2.051
2015-08-18T00:36:00Z      2.067
#第一條(`(2.116+2.064)/2`)并淋,第二條(`(2.028+2.116)/2`)
> SELECT MOVING_AVERAGE("water_level",2) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z'
name: h2o_feet
--------------
time                            moving_average
2015-08-18T00:06:00Z      2.09
2015-08-18T00:12:00Z      2.072
2015-08-18T00:18:00Z      2.077
2015-08-18T00:24:00Z      2.0835
2015-08-18T00:30:00Z      2.0460000000000003
2015-08-18T00:36:00Z      2.059
#分組統(tǒng)計
> SELECT MIN("water_level") FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z' GROUP BY time(12m)
name: h2o_feet
--------------
time                            min
2015-08-18T00:00:00Z      2.064
2015-08-18T00:12:00Z      2.028
2015-08-18T00:24:00Z      2.041
2015-08-18T00:36:00Z      2.067
#分組統(tǒng)計滑動平均值,第一條(`(2.064+2.028)/2`)
> SELECT MOVING_AVERAGE(MIN("water_level"),2) FROM "h2o_feet" WHERE "location" = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time <= '2015-08-18T00:36:00Z' GROUP BY time(12m)
name: h2o_feet
--------------
time                            moving_average
2015-08-18T00:12:00Z      2.0460000000000003
2015-08-18T00:24:00Z      2.0345000000000004
2015-08-18T00:36:00Z      2.0540000000000003

3.6 NON_NEGATIVE_DERIVATIVE()

說明:返回系列中單個字段中的值的非負變化率县耽。 InfluxDB計算時間域值之間的差異,并將這些結果轉換為單位變化率镣典。 單位參數(shù)是可選的兔毙,如果未指定,則默認為1秒(1秒)兄春。改函數(shù)和DERIVATIVE()函數(shù)類似澎剥,只是返回其正數(shù)結果。
語法

SELECT NON_NEGATIVE_DERIVATIVE(<field_key>, [<unit>]) FROM <measurement_name> [WHERE <stuff>]

SELECT NON_NEGATIVE_DERIVATIVE(AGGREGATION_FUNCTION(<field_key>),[<unit>]) FROM <measurement_name> WHERE <stuff> GROUP BY time(<aggregation_interval>)

4. 預測函數(shù)

4.1 HOLT_WINTERS()

說明:霍爾特指數(shù)平滑法赶舆,該字段必須是int64float64類型哑姚。算法找度娘祭饭。
語法

SELECT HOLT_WINTERS(FUNCTION(<field_key>),<N>,<S>) FROM <measurement_name> WHERE <stuff> GROUP BY time(<interval>)[,<stuff>]

SELECT HOLT_WINTERS_WITH_FIT(FUNCTION(<field_key>),<N>,<S>) FROM <measurement_name> WHERE <stuff> GROUP BY time(<interval>)[,<stuff>]
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市叙量,隨后出現(xiàn)的幾起案子倡蝙,更是在濱河造成了極大的恐慌,老刑警劉巖绞佩,帶你破解...
    沈念sama閱讀 217,509評論 6 504
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件寺鸥,死亡現(xiàn)場離奇詭異,居然都是意外死亡品山,警方通過查閱死者的電腦和手機胆建,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,806評論 3 394
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來谆奥,“玉大人眼坏,你說我怎么就攤上這事∷嵝” “怎么了宰译?”我有些...
    開封第一講書人閱讀 163,875評論 0 354
  • 文/不壞的土叔 我叫張陵,是天一觀的道長魄懂。 經常有香客問我沿侈,道長,這世上最難降的妖魔是什么市栗? 我笑而不...
    開封第一講書人閱讀 58,441評論 1 293
  • 正文 為了忘掉前任缀拭,我火速辦了婚禮,結果婚禮上填帽,老公的妹妹穿的比我還像新娘蛛淋。我一直安慰自己,他們只是感情好篡腌,可當我...
    茶點故事閱讀 67,488評論 6 392
  • 文/花漫 我一把揭開白布褐荷。 她就那樣靜靜地躺著,像睡著了一般嘹悼。 火紅的嫁衣襯著肌膚如雪叛甫。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,365評論 1 302
  • 那天杨伙,我揣著相機與錄音其监,去河邊找鬼。 笑死限匣,一個胖子當著我的面吹牛抖苦,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 40,190評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼睛约,長吁一口氣:“原來是場噩夢啊……” “哼鼎俘!你這毒婦竟也來了?” 一聲冷哼從身側響起辩涝,我...
    開封第一講書人閱讀 39,062評論 0 276
  • 序言:老撾萬榮一對情侶失蹤贸伐,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后怔揩,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體捉邢,經...
    沈念sama閱讀 45,500評論 1 314
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 37,706評論 3 335
  • 正文 我和宋清朗相戀三年商膊,在試婚紗的時候發(fā)現(xiàn)自己被綠了伏伐。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 39,834評論 1 347
  • 序言:一個原本活蹦亂跳的男人離奇死亡晕拆,死狀恐怖藐翎,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情实幕,我是刑警寧澤吝镣,帶...
    沈念sama閱讀 35,559評論 5 345
  • 正文 年R本政府宣布,位于F島的核電站昆庇,受9級特大地震影響末贾,放射性物質發(fā)生泄漏。R本人自食惡果不足惜整吆,卻給世界環(huán)境...
    茶點故事閱讀 41,167評論 3 328
  • 文/蒙蒙 一拱撵、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧表蝙,春花似錦拴测、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,779評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至欲诺,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間渺鹦,已是汗流浹背扰法。 一陣腳步聲響...
    開封第一講書人閱讀 32,912評論 1 269
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留毅厚,地道東北人塞颁。 一個月前我還...
    沈念sama閱讀 47,958評論 2 370
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親祠锣。 傳聞我的和親對象是個殘疾皇子酷窥,可洞房花燭夜當晚...
    茶點故事閱讀 44,779評論 2 354

推薦閱讀更多精彩內容

  • 前言 人生苦多,快來 Kotlin 伴网,快速學習Kotlin蓬推! 什么是Kotlin? Kotlin 是種靜態(tài)類型編程...
    任半生囂狂閱讀 26,209評論 9 118
  • importUIKit classViewController:UITabBarController{ enumD...
    明哥_Young閱讀 3,805評論 1 10
  • Spring Cloud為開發(fā)人員提供了快速構建分布式系統(tǒng)中一些常見模式的工具(例如配置管理澡腾,服務發(fā)現(xiàn)沸伏,斷路器,智...
    卡卡羅2017閱讀 134,656評論 18 139
  • 最近在寫個性化推薦的論文动分,經常用到Python來處理數(shù)據(jù)毅糟,被pandas和numpy中的數(shù)據(jù)選取和索引問題繞的比較...
    shuhanrainbow閱讀 4,553評論 6 19
  • “人的心在舒服區(qū),心智不會成長”澜公,當我在寫作群里說最近寫文章有點兒煩時姆另,一位筆友對我這樣說。 最近寫文章有點糾結坟乾,...
    紅雲(yún)說口才閱讀 229評論 0 2