This is a short introduction to pandas, geared mainly for new users。
Customarily,we import as follows:
In [1]: import numpy as np
In [2]: import pandas as pd
Object creation
Creating a Series by passing a list of values, letting pandas create a default integer index
s = pd.Series([1, 3, 5, np.nan, 6, 8])
Creating a DataFrame by passing a NumPy array, with a datetime index and labeled columns
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
index
columns
Creating a DataFrame by passing a dict of objects that can be converted to series-like.
Viewing data
Here is how to view the top and bottom rows of the frame:
df.head()
df.tail(3)
df.index
df.columns
df.describe()
df.T
Sorting by an axis
df.sort_index(axis=1, ascending=False)
df.sort_values(by='B')
Selection
While standard Python / Numpy expressions for selecting and setting are intuitive 直觀的 and come in handy for interactive 互動的 work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc and .iloc.
Getting
Selecting a single column, which yields a Series, equivalent 等效的 to df.A:df['A']
Selecting via [], which slices the rows. 切片
df[0:3]
df['20130102':'20130104']
Selection by label
df.loc[dates[0]]
df.loc[:, ['A', 'B']]
df.loc['20130102':'20130104', ['A', 'B']]
df.loc['20130102', ['A', 'B']]
df.loc[dates[0], 'A']
df.at[dates[0], 'A']
Selection by position
df.iloc[3]
df.iloc[3:5, 0:2]
df.iloc[[1, 2, 4], [0, 2]]
df.iloc[1:3, :]
df.iloc[:, 1:3]
df.iloc[1, 1]
df.iat[1, 1]
Boolean indexing
df[df['A'] > 0]
df[df > 0]
df2[df2['E'].isin(['two', 'four'])]
Setting
Setting a new column automatically aligns the data by the indexes.
Setting values by label:
Setting values by position:
Setting by assigning with a NumPy array:
Missing data
pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations
Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.
To drop any rows that have missing data.
df1.dropna(how='any')
Filling missing data.
df1.fillna(value=5)
To get the boolean mask where values are nan.
pd.isna(df1)
Operations
Stats
Operations in general exclude missing data.
df.mean()
Apply
df.apply(np.cumsum)
df.apply(lambda x: x.max() - x.min())
Histogramming
s.value_counts()
String Methods
s.str.lower()
Merge
Concatenating pandas objects together with concat()
pd.concat(df1,df2)
pd.merge(left, right, on='key')
Grouping
By“group by” we are referring to a process involving one or more of the followingsteps:
Splitting the data into groups based on some criteria
Applying a function to each group independently
Combining the results into a data structure
df.groupby('A').sum()
df.groupby(['A', 'B']).sum()
Reshaping
The stack() method “compresses” a level in the DataFrame’s columns.
With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is unstack(), which by default unstacks the last level
stacked.unstack()
stacked.unstack(1)
Pivot tables
pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Time series
rng = pd.date_range('1/1/2012', periods=100, freq='S')
ts_utc = ts.tz_localize('UTC')
rng = pd.date_range('1/1/2012', periods=5, freq='M')
ps = ts.to_period()
ps.to_timestamp()
Categoricals
df["grade"]=df["raw_grade"].astype("category")
df.groupby("grade").size()
Plotting
We use the standard convention for referencing the matplotlib API
import matplotlib.pyplot as plt
plt.close('all')
On a DataFrame, the plot() method is a convenience to plot all of the columns with labels
plt.figure()
df.plot()
Getting data in/out
CSV
Writing to a csv file.
df.to_csv('foo.csv')
Reading from a csv file.
pd.read_csv('foo.csv')
HDF5
df.to_hdf('foo.h5', 'df')
pd.read_hdf('foo.h5', 'df')
Excel
df.to_excel('foo.xlsx', sheet_name='Sheet1')
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']
10 minutes to pandas
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
- 文/潘曉璐 我一進(jìn)店門扫茅,熙熙樓的掌柜王于貴愁眉苦臉地迎上來蹋嵌,“玉大人,你說我怎么就攤上這事葫隙≡岳茫” “怎么了?”我有些...
- 文/不壞的土叔 我叫張陵恋脚,是天一觀的道長腺办。 經(jīng)常有香客問我,道長糟描,這世上最難降的妖魔是什么怀喉? 我笑而不...
- 正文 為了忘掉前任,我火速辦了婚禮蚓挤,結(jié)果婚禮上磺送,老公的妹妹穿的比我還像新娘。我一直安慰自己灿意,他們只是感情好,可當(dāng)我...
- 文/花漫 我一把揭開白布崇呵。 她就那樣靜靜地躺著缤剧,像睡著了一般。 火紅的嫁衣襯著肌膚如雪域慷。 梳的紋絲不亂的頭發(fā)上荒辕,一...
- 文/蒼蘭香墨 我猛地睜開眼宙枷,長吁一口氣:“原來是場噩夢啊……” “哼掉房!你這毒婦竟也來了茧跋?” 一聲冷哼從身側(cè)響起,我...
- 正文 獨(dú)居荒郊野嶺守林人離奇死亡粥烁,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
- 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了蝇棉。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片页徐。...
- 正文 年R本政府宣布搀绣,位于F島的核電站,受9級特大地震影響戳气,放射性物質(zhì)發(fā)生泄漏链患。R本人自食惡果不足惜,卻給世界環(huán)境...
- 文/蒙蒙 一瓶您、第九天 我趴在偏房一處隱蔽的房頂上張望麻捻。 院中可真熱鬧,春花似錦呀袱、人聲如沸贸毕。這莊子的主人今日做“春日...
- 文/蒼蘭香墨 我抬頭看了看天上的太陽明棍。三九已至,卻和暖如春寇僧,著一層夾襖步出監(jiān)牢的瞬間摊腋,已是汗流浹背。 一陣腳步聲響...
- 正文 我出身青樓细办,卻偏偏與公主長得像橙凳,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
推薦閱讀更多精彩內(nèi)容
- Features PremiereIn the last section, we exposed you to t...
- 轉(zhuǎn)載請在文章起始處注明出處痕惋,謝謝区宇。 jupyter notebook 保存的md文件用markdownpad打開后...
- 這個學(xué)期起初的時候?qū)σ恍〇|西有所了解過,就跳過很多東西吧值戳,把一些自己認(rèn)為重要的做出筆記议谷,看了昨天的那東西,截圖搞得...