rnn

import numpy as np

"""

This file defines layer types that are commonly used for recurrent neural

networks.

"""

def rnn_step_forward(x, prev_h, Wx, Wh, b):

"""

Run the forward pass for a single timestep of a vanilla RNN that uses a tanh

activation function.

The input data has dimension D, the hidden state has dimension H, and we use

a minibatch size of N.

Inputs:

- x: Input data for this timestep, of shape (N, D).

- prev_h: Hidden state from previous timestep, of shape (N, H)

- Wx: Weight matrix for input-to-hidden connections, of shape (D, H)

- Wh: Weight matrix for hidden-to-hidden connections, of shape (H, H)

- b: Biases of shape (H,)

Returns a tuple of:

- next_h: Next hidden state, of shape (N, H)

- cache: Tuple of values needed for the backward pass.

"""

next_h, cache = None, None

##############################################################################

# TODO: Implement a single forward step for the vanilla RNN. Store the next? #

# hidden state and any values you need for the backward pass in the next_h? #

# and cache variables respectively.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

a = prev_h.dot(Wh) + x.dot(Wx) + b

next_h = np.tanh(a)

cache = (x, prev_h, Wh, Wx, b, next_h)

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return next_h, cache

def rnn_step_backward(dnext_h, cache):

"""

Backward pass for a single timestep of a vanilla RNN.

Inputs:

- dnext_h: Gradient of loss with respect to next hidden state

- cache: Cache object from the forward pass

Returns a tuple of:

- dx: Gradients of input data, of shape (N, D)

- dprev_h: Gradients of previous hidden state, of shape (N, H)

- dWx: Gradients of input-to-hidden weights, of shape (N, H)

- dWh: Gradients of hidden-to-hidden weights, of shape (H, H)

- db: Gradients of bias vector, of shape (H,)

"""

dx, dprev_h, dWx, dWh, db = None, None, None, None, None

##############################################################################

# TODO: Implement the backward pass for a single step of a vanilla RNN.? ? ? #

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

# HINT: For the tanh function, you can compute the local derivative in terms #

# of the output value from tanh.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

x, prev_h, Wh, Wx, b, next_h =? cache

da = dnext_h * (1 - next_h * next_h)

dx = da.dot(Wx.T)

dprev_h = da.dot(Wh.T)

dWx = x.T.dot(da)

dWh = prev_h.T.dot(da)

db = np.sum(da, axis = 0)

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return dx, dprev_h, dWx, dWh, db

def rnn_forward(x, h0, Wx, Wh, b):

"""

Run a vanilla RNN forward on an entire sequence of data. We assume an input

sequence composed of T vectors, each of dimension D. The RNN uses a hidden

size of H, and we work over a minibatch containing N sequences. After running

the RNN forward, we return the hidden states for all timesteps.

Inputs:

- x: Input data for the entire timeseries, of shape (N, T, D).

- h0: Initial hidden state, of shape (N, H)

- Wx: Weight matrix for input-to-hidden connections, of shape (D, H)

- Wh: Weight matrix for hidden-to-hidden connections, of shape (H, H)

- b: Biases of shape (H,)

Returns a tuple of:

- h: Hidden states for the entire timeseries, of shape (N, T, H).

- cache: Values needed in the backward pass

"""

h, cache = None, None

##############################################################################

# TODO: Implement forward pass for a vanilla RNN running on a sequence of? ? #

# input data. You should use the rnn_step_forward function that you defined? #

# above.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

N, T, D = x.shape

(H ,) = b.shape

h = np.zeros((N, T, H))

prev_h = h0

for t in range(T):

xt = x[:, t, :]

next_h,_ = rnn_step_forward(xt, prev_h, Wx, Wh, b)

prev_h = next_h

h[:, t, :] = prev_h

cache = (x, h0, Wh, Wx, b, h)

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return h, cache

def rnn_backward(dh, cache):

"""

Compute the backward pass for a vanilla RNN over an entire sequence of data.

Inputs:

- dh: Upstream gradients of all hidden states, of shape (N, T, H)

Returns a tuple of:

- dx: Gradient of inputs, of shape (N, T, D)

- dh0: Gradient of initial hidden state, of shape (N, H)

- dWx: Gradient of input-to-hidden weights, of shape (D, H)

- dWh: Gradient of hidden-to-hidden weights, of shape (H, H)

- db: Gradient of biases, of shape (H,)

"""

dx, dh0, dWx, dWh, db = None, None, None, None, None

##############################################################################

# TODO: Implement the backward pass for a vanilla RNN running an entire? ? ? #

# sequence of data. You should use the rnn_step_backward function that you? #

# defined above.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

x, h0, Wh, Wx, b, h = cache

N, T, H = dh.shape

_, _, D = x.shape

next_h = h[:,T-1,:]

dprev_h = np.zeros((N, H))

dx = np.zeros((N, T, D))

dh0 = np.zeros((N, H))

dWx= np.zeros((D, H))

dWh = np.zeros((H, H))

db = np.zeros((H,))

for t in range(T):

t = T-1-t

xt = x[:,t,:]

if t ==0:

prev_h = h0

else:

prev_h = h[:,t-1,:]

step_cache = (xt, prev_h, Wh, Wx, b, next_h)

next_h = prev_h

dnext_h = dh[:,t,:] + dprev_h

dx[:,t,:], dprev_h, dWxt, dWht, dbt = rnn_step_backward(dnext_h, step_cache)

dWx, dWh, db = dWx+dWxt, dWh+dWht, db+dbt

dh0 = dprev_h

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return dx, dh0, dWx, dWh, db

def word_embedding_forward(x, W):

"""

Forward pass for word embeddings. We operate on minibatches of size N where

each sequence has length T. We assume a vocabulary of V words, assigning each

to a vector of dimension D.

Inputs:

- x: Integer array of shape (N, T) giving indices of words. Each element idx

of x muxt be in the range 0 <= idx < V.

- W: Weight matrix of shape (V, D) giving word vectors for all words.

Returns a tuple of:

- out: Array of shape (N, T, D) giving word vectors for all input words.

- cache: Values needed for the backward pass

"""

out, cache = None, None

##############################################################################

# TODO: Implement the forward pass for word embeddings.? ? ? ? ? ? ? ? ? ? ? #

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

# HINT: This should be very simple.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

N, T = x.shape

V, D = W.shape

out = np.zeros((N, T, D))

for i in range(N):

for j in range(T):

out[i, j] = W[x[i,j]]

cache = (x, W.shape)

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return out, cache

def word_embedding_backward(dout, cache):

"""

Backward pass for word embeddings. We cannot back-propagate into the words

since they are integers, so we only return gradient for the word embedding

matrix.

HINT: Look up the function np.add.at

Inputs:

- dout: Upstream gradients of shape (N, T, D)

- cache: Values from the forward pass

Returns:

- dW: Gradient of word embedding matrix, of shape (V, D).

"""

dW = None

##############################################################################

# TODO: Implement the backward pass for word embeddings.? ? ? ? ? ? ? ? ? ? #

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

# HINT: Look up the function np.add.at? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

x, W_shape = cache

dW = np.zeros(W_shape)

np.add.at(dW, x, dout)

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return dW

def sigmoid(x):

"""

A numerically stable version of the logistic sigmoid function.

"""

pos_mask = (x >= 0)

neg_mask = (x < 0)

z = np.zeros_like(x)

z[pos_mask] = np.exp(-x[pos_mask])

z[neg_mask] = np.exp(x[neg_mask])

top = np.ones_like(x)

top[neg_mask] = z[neg_mask]

return top / (1 + z)

def lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b):

"""

Forward pass for a single timestep of an LSTM.

The input data has dimension D, the hidden state has dimension H, and we use

a minibatch size of N.

Inputs:

- x: Input data, of shape (N, D)

- prev_h: Previous hidden state, of shape (N, H)

- prev_c: previous cell state, of shape (N, H)

- Wx: Input-to-hidden weights, of shape (D, 4H)

- Wh: Hidden-to-hidden weights, of shape (H, 4H)

- b: Biases, of shape (4H,)

Returns a tuple of:

- next_h: Next hidden state, of shape (N, H)

- next_c: Next cell state, of shape (N, H)

- cache: Tuple of values needed for backward pass.

"""

next_h, next_c, cache = None, None, None

#############################################################################

# TODO: Implement the forward pass for a single timestep of an LSTM.? ? ? ? #

# You may want to use the numerically stable sigmoid implementation above.? #

#############################################################################

H = Wh.shape[0]

a = x.dot(Wx) + prev_h.dot(Wh) + b

z_i = sigmoid(a[:,:H])

z_f = sigmoid(a[:,H:2*H])

z_o = sigmoid(a[:,2*H:3*H])

z_g = np.tanh(a[:,3*H:])

next_c = z_f * prev_c + z_i * z_g

z_t = np.tanh(next_c)

next_h = z_o * z_t

cache = (z_i, z_f, z_o, z_g, z_t, prev_c, prev_h, Wx, Wh, x)

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return next_h, next_c, cache

def lstm_step_backward(dnext_h, dnext_c, cache):

"""

Backward pass for a single timestep of an LSTM.

Inputs:

- dnext_h: Gradients of next hidden state, of shape (N, H)

- dnext_c: Gradients of next cell state, of shape (N, H)

- cache: Values from the forward pass

Returns a tuple of:

- dx: Gradient of input data, of shape (N, D)

- dprev_h: Gradient of previous hidden state, of shape (N, H)

- dprev_c: Gradient of previous cell state, of shape (N, H)

- dWx: Gradient of input-to-hidden weights, of shape (D, 4H)

- dWh: Gradient of hidden-to-hidden weights, of shape (H, 4H)

- db: Gradient of biases, of shape (4H,)

"""

dx, dh, dc, dWx, dWh, db = None, None, None, None, None, None

#############################################################################

# TODO: Implement the backward pass for a single timestep of an LSTM.? ? ? #

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

# HINT: For sigmoid and tanh you can compute local derivatives in terms of? #

# the output value from the nonlinearity.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

#############################################################################

H = dnext_h.shape[1]

z_i, z_f, z_o, z_g, z_t, prev_c, prev_h, Wx, Wh, x = cache

dz_o = z_t * dnext_h

dc_t = z_o * (1 - z_t * z_t) * dnext_h + dnext_c

dz_f = prev_c * dc_t

dz_i = z_g * dc_t

dprev_c = z_f * dc_t

dz_g = z_i * dc_t

da_i = (1 - z_i) * z_i * dz_i

da_f = (1 - z_f) * z_f * dz_f

da_o = (1 - z_o) * z_o * dz_o

da_g = (1 - z_g * z_g) * dz_g

da = np.hstack((da_i, da_f, da_o, da_g))

dWx = x.T.dot(da)

dWh = prev_h.T.dot(da)

db = np.sum(da, axis = 0)

dx = da.dot(Wx.T)

dprev_h = da.dot(Wh.T)

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return dx, dprev_h, dprev_c, dWx, dWh, db

def lstm_forward(x, h0, Wx, Wh, b):

"""

Forward pass for an LSTM over an entire sequence of data. We assume an input

sequence composed of T vectors, each of dimension D. The LSTM uses a hidden

size of H, and we work over a minibatch containing N sequences. After running

the LSTM forward, we return the hidden states for all timesteps.

Note that the initial cell state is passed as input, but the initial cell

state is set to zero. Also note that the cell state is not returned; it is

an internal variable to the LSTM and is not accessed from outside.

Inputs:

- x: Input data of shape (N, T, D)

- h0: Initial hidden state of shape (N, H)

- Wx: Weights for input-to-hidden connections, of shape (D, 4H)

- Wh: Weights for hidden-to-hidden connections, of shape (H, 4H)

- b: Biases of shape (4H,)

Returns a tuple of:

- h: Hidden states for all timesteps of all sequences, of shape (N, T, H)

- cache: Values needed for the backward pass.

"""

h, cache = None, None

#############################################################################

# TODO: Implement the forward pass for an LSTM over an entire timeseries.? #

# You should use the lstm_step_forward function that you just defined.? ? ? #

#############################################################################

N, T, D = x.shape

H = b.shape[0]/4

h = np.zeros((N, T, H))

cache = {}

prev_h = h0

prev_c = np.zeros((N, H))

for t in range(T):

xt = x[:, t, :]

next_h, next_c, cache[t] = lstm_step_forward(xt, prev_h, prev_c, Wx, Wh, b)

prev_h = next_h

prev_c = next_c

h[:, t, :] = prev_h

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return h, cache

def lstm_backward(dh, cache):

"""

Backward pass for an LSTM over an entire sequence of data.]

Inputs:

- dh: Upstream gradients of hidden states, of shape (N, T, H)

- cache: Values from the forward pass

Returns a tuple of:

- dx: Gradient of input data of shape (N, T, D)

- dh0: Gradient of initial hidden state of shape (N, H)

- dWx: Gradient of input-to-hidden weight matrix of shape (D, 4H)

- dWh: Gradient of hidden-to-hidden weight matrix of shape (H, 4H)

- db: Gradient of biases, of shape (4H,)

"""

dx, dh0, dWx, dWh, db = None, None, None, None, None

#############################################################################

# TODO: Implement the backward pass for an LSTM over an entire timeseries.? #

# You should use the lstm_step_backward function that you just defined.? ? #

#############################################################################

N, T, H = dh.shape

z_i, z_f, z_o, z_g, z_t, prev_c, prev_h, Wx, Wh, x = cache[T-1]

D = x.shape[1]

dprev_h = np.zeros((N, H))

dprev_c = np.zeros((N, H))

dx = np.zeros((N, T, D))

dh0 = np.zeros((N, H))

dWx= np.zeros((D, 4*H))

dWh = np.zeros((H, 4*H))

db = np.zeros((4*H,))

for t in range(T):

t = T-1-t

step_cache = cache[t]

dnext_h = dh[:,t,:] + dprev_h

dnext_c = dprev_c

dx[:,t,:], dprev_h, dprev_c, dWxt, dWht, dbt = lstm_step_backward(dnext_h, dnext_c, step_cache)

dWx, dWh, db = dWx+dWxt, dWh+dWht, db+dbt

dh0 = dprev_h

#pass

##############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

##############################################################################

return dx, dh0, dWx, dWh, db

def temporal_affine_forward(x, w, b):

"""

Forward pass for a temporal affine layer. The input is a set of D-dimensional

vectors arranged into a minibatch of N timeseries, each of length T. We use

an affine function to transform each of those vectors into a new vector of

dimension M.

Inputs:

- x: Input data of shape (N, T, D)

- w: Weights of shape (D, M)

- b: Biases of shape (M,)

Returns a tuple of:

- out: Output data of shape (N, T, M)

- cache: Values needed for the backward pass

"""

N, T, D = x.shape

M = b.shape[0]

out = x.reshape(N * T, D).dot(w).reshape(N, T, M) + b

cache = x, w, b, out

return out, cache

def temporal_affine_backward(dout, cache):

"""

Backward pass for temporal affine layer.

Input:

- dout: Upstream gradients of shape (N, T, M)

- cache: Values from forward pass

Returns a tuple of:

- dx: Gradient of input, of shape (N, T, D)

- dw: Gradient of weights, of shape (D, M)

- db: Gradient of biases, of shape (M,)

"""

x, w, b, out = cache

N, T, D = x.shape

M = b.shape[0]

dx = dout.reshape(N * T, M).dot(w.T).reshape(N, T, D)

dw = dout.reshape(N * T, M).T.dot(x.reshape(N * T, D)).T

db = dout.sum(axis=(0, 1))

return dx, dw, db

def temporal_softmax_loss(x, y, mask, verbose=False):

"""

A temporal version of softmax loss for use in RNNs. We assume that we are

making predictions over a vocabulary of size V for each timestep of a

timeseries of length T, over a minibatch of size N. The input x gives scores

for all vocabulary elements at all timesteps, and y gives the indices of the

ground-truth element at each timestep. We use a cross-entropy loss at each

timestep, summing the loss over all timesteps and averaging across the

minibatch.

As an additional complication, we may want to ignore the model output at some

timesteps, since sequences of different length may have been combined into a

minibatch and padded with NULL tokens. The optional mask argument tells us

which elements should contribute to the loss.

Inputs:

- x: Input scores, of shape (N, T, V)

- y: Ground-truth indices, of shape (N, T) where each element is in the range

0 <= y[i, t] < V

- mask: Boolean array of shape (N, T) where mask[i, t] tells whether or not

the scores at x[i, t] should contribute to the loss.

Returns a tuple of:

- loss: Scalar giving loss

- dx: Gradient of loss with respect to scores x.

"""

N, T, V = x.shape

x_flat = x.reshape(N * T, V)

y_flat = y.reshape(N * T)

mask_flat = mask.reshape(N * T)

probs = np.exp(x_flat - np.max(x_flat, axis=1, keepdims=True))

probs /= np.sum(probs, axis=1, keepdims=True)

loss = -np.sum(mask_flat * np.log(probs[np.arange(N * T), y_flat])) / N

dx_flat = probs.copy()

dx_flat[np.arange(N * T), y_flat] -= 1

dx_flat /= N

dx_flat *= mask_flat[:, None]

if verbose: print 'dx_flat: ', dx_flat.shape

dx = dx_flat.reshape(N, T, V)

return loss, dx

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末余境,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子躬窜,更是在濱河造成了極大的恐慌习柠,老刑警劉巖,帶你破解...
    沈念sama閱讀 222,000評論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異地回,居然都是意外死亡竞帽,警方通過查閱死者的電腦和手機杨帽,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,745評論 3 399
  • 文/潘曉璐 我一進店門法希,熙熙樓的掌柜王于貴愁眉苦臉地迎上來歹袁,“玉大人耘拇,你說我怎么就攤上這事∮罟ィ” “怎么了惫叛?”我有些...
    開封第一講書人閱讀 168,561評論 0 360
  • 文/不壞的土叔 我叫張陵,是天一觀的道長逞刷。 經(jīng)常有香客問我嘉涌,道長妻熊,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 59,782評論 1 298
  • 正文 為了忘掉前任仑最,我火速辦了婚禮扔役,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘警医。我一直安慰自己亿胸,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 68,798評論 6 397
  • 文/花漫 我一把揭開白布预皇。 她就那樣靜靜地躺著侈玄,像睡著了一般。 火紅的嫁衣襯著肌膚如雪吟温。 梳的紋絲不亂的頭發(fā)上序仙,一...
    開封第一講書人閱讀 52,394評論 1 310
  • 那天,我揣著相機與錄音鲁豪,去河邊找鬼潘悼。 笑死,一個胖子當(dāng)著我的面吹牛爬橡,可吹牛的內(nèi)容都是我干的治唤。 我是一名探鬼主播,決...
    沈念sama閱讀 40,952評論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼糙申,長吁一口氣:“原來是場噩夢啊……” “哼肝劲!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起郭宝,我...
    開封第一講書人閱讀 39,852評論 0 276
  • 序言:老撾萬榮一對情侶失蹤辞槐,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后粘室,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體榄檬,經(jīng)...
    沈念sama閱讀 46,409評論 1 318
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 38,483評論 3 341
  • 正文 我和宋清朗相戀三年衔统,在試婚紗的時候發(fā)現(xiàn)自己被綠了鹿榜。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 40,615評論 1 352
  • 序言:一個原本活蹦亂跳的男人離奇死亡锦爵,死狀恐怖舱殿,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情险掀,我是刑警寧澤沪袭,帶...
    沈念sama閱讀 36,303評論 5 350
  • 正文 年R本政府宣布,位于F島的核電站樟氢,受9級特大地震影響冈绊,放射性物質(zhì)發(fā)生泄漏侠鳄。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,979評論 3 334
  • 文/蒙蒙 一死宣、第九天 我趴在偏房一處隱蔽的房頂上張望伟恶。 院中可真熱鬧,春花似錦毅该、人聲如沸博秫。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,470評論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽挡育。三九已至,卻和暖如春畏线,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背良价。 一陣腳步聲響...
    開封第一講書人閱讀 33,571評論 1 272
  • 我被黑心中介騙來泰國打工寝殴, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人明垢。 一個月前我還...
    沈念sama閱讀 49,041評論 3 377
  • 正文 我出身青樓蚣常,卻偏偏與公主長得像,于是被迫代替她去往敵國和親痊银。 傳聞我的和親對象是個殘疾皇子抵蚊,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 45,630評論 2 359

推薦閱讀更多精彩內(nèi)容